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We present a study of the antiferromagnetic Potts model in two and three dimensions, using a new
method of Monte Carlo simulations, which enables us to perform simulations with greatly improved
efficiency. Illustrating the method for the three-state model, we have obtained new results for the entro-
py and critical exponents in two and three dimensions. The low-temperature phase in three dimensions
is shown to have long-range order with a finite-size dependence similar to that of the XY model.

PACS numbers: 05.50.+q, 64.60.Fr, 75.10.Hk

Antiferromagnetic Potts models have been shown to
possess interesting and unusual properties.' > To begin
with, the residual entropy at 7=0 is bounded from
below by Ln (g—1), where g is the number of states, so
that it is nonvanishing for ¢ > 2. The ¢ =3 model on a
square lattice has a critical point at 7=0.'"® In three
dimensions, the evidence indicates the existence of phase
transitions for the three- and four-state models,”™!3 al-
though the nature of these transitions has been uncer-
tain. Other studies have shown that the addition of
second-neighbor interactions, 4! mixed anisotropic in-
teractions, '®!° or an external magnetic field?® can pro-
duce new types of ordering and new phase transitions.

Monte Carlo (MC) simulations have played an impor-
tant part in investigating antiferromagnetic Potts mod-
els, but they have been hampered by extremely long re-
laxation times at low temperatures (where things get in-
teresting). The source of these long correlation times
lies in the large number of degenerate states to be sam-
pled and the restrictions on transitions between con-
figurations at low temperatures due to the interactions,
as exemplified by the slow diffusion of “vortex™ excita-
tions. 2!+22

In this Letter, we present a new method of MC simu-
lation, based on the Swendsen-Wang (SW) algorithm??
and an idea due to Wolff,?*?> which enables us to simu-
late antiferromagnetic Potts models very efficiently. Us-
ing this new method, we simulated the critical point of
the three-state model on a square lattice at 7=0 and
calculated the critical behavior. In three dimensions, we
located the phase transition of the three-state model on a
simple-cubic lattice, calculated the critical exponents,
and showed that the order parameter does not vanish
below 7.

An essential part of this study was the use of a
multiple-histogram analysis of the MC data.?®?’ This
permitted us to accurately determine the location and
height of the very narrow peaks associated with the tran-
sition, as well as to plot continuous scaling curves and
calculate the residual entropy at 7=0.

Potts models?® are defined by the Hamiltonian

H"KZ 5(0’,’,0‘]), (n
(i, j)
where the spins take on the values o;,=1,2,...,q, and
the sum is over nearest-neighbor pairs of sites on a lat-
tice. K is a dimensionless coupling constant, in which we
have absorbed the usual factor of —1/kgT, so that the
partition function is given by

Z=Tryel. )

Antiferromagnetic Potts models are those for which K
is negative, so that neighboring sites with different states
are energetically favored.

The SW algorithm uses the Fortuin-Kasteleyn map-
ping of ferromagnetic Potts models onto percolation
models.?’ Each interaction between pairs of like spins is
transformed into a bond between the sites with probabili-
ty p=1—e ~X. This procedure naturally runs into trou-
ble when K is negative. Swendsen and Wang?? pointed
out that for g=2 (Ising model) the difficulty can be
avoided by generalizing the Fortuin-Kasteleyn mapping.
The resulting method used “antibonds,” with probability
p =1—eX between neighboring sites with opposite spin.
They were not able to extend this approach to g > 2, be-
cause of the ambiguity involved in having more than one
“‘opposite” state.

The key observation that enables us to treat g > 2 is
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that we can embed an Ising model in an antiferromag-
netic Potts model, in a manner closely related to Wolff’s
embedding of Ising reflection variables in O(n) mod-
els.2*% We chose two states at random and restrict the
MC update to sites containing these values, while sites
containing other states remain frozen. This leaves us
with a ¢=2 antiferromagnetic Potts model (taking on
these two values) on a subset of the lattice sites.

Since the interactions between the chosen states and
the frozen sites are unaffected, the reduced Hamiltonian
can be updated with the SW algorithm.?* If g = 4, two
or more pairs of states can be updated simultaneously.
Naturally, it is also possible to use Wolff’s modification
of the SW algorithm to pick a single site, and flip the
cluster containing that site.?*

In analyzing the behavior of antiferromagnetic Potts
models, we consider a generalized staggered magnetiza-
tion

A B
M,=2|36(ci,a) =2 8(ci,a) |, (3)

where the sums are restricted to the 4 and B sublattices.
An order parameter suggested by the possibility of “bro-
ken sublattice symmetry” ' is

q

M= (|M, | 4)

a=1

and the susceptibility above T is given by

q
x=L "2 (M) (5)
a=1|

This can be either measured from the Potts config-

urations, or {M2) can be rewritten in terms of the per-

colation clusters. If N“(a) and N%(a) denote the num-

ber of sites in the cluster a on the 4 and B sublattices,

and N(a) =N“*(a)+N2(a) is the total number of sites
in the cluster, then

x=L _"[<§N2(a)>+< [;[N”‘(a) —NB(a)]]2>] .

(6)

For the d=2, ¢ =3 Potts model, we first compared the
new method with single-spin-flip Monte Carlo data for a
simulation at 7=0. For small lattices, the results of the
two methods agreed, but the single-spin-flip Monte Carlo
correlation times increased with lattice size approximate-
ly as £=0.3L2 so that the effective dynamical critical
exponent was approximately z=2. The correlation time
for the new algorithm was about seven from L =4 to 64.
The effective value of z was too small to measure from
our data.

The log-log plot of y vs L was very nearly straight, giv-
ing y/v=1.666 x0.002. Assuming scaling, this corre-
sponds to n=0.334+0.002. For 7> 0, we found that
the susceptibility was proportional to exp(4T ~"), where

110

v=1.30, in agreement with the results of Nightingale
and Schick.?

To calculate the entropy of the ground state, which is
known to be S(0)=1321n% (Ref. 30) in the thermo-
dynamic limit, we used the multiple-histogram method. ?’
Combining information from five simulations each for
L=4 and 8, and nine simulations for L=16, we ob-
tained®' §(4) =0.5000, S(8)=0.4484, and S(16)
=0.4359. These values fit extremely well to the equa-
tion S(L)=S()+L "“In3 (see note added). This
equation is even in reasonable agreement for L =2,
where it predicts 16.85 states, compared with the exact
answer of 18.

For the d=3, ¢g=3 model, the multiple-histogram
method?” was used to scan the entire temperature range.
The entropy of the ground state showed a size depen-
dence which we interpret to be similar to that in two di-
mensions. Although we only have values of the residual
entropy®' for L=4 and 8 [S(4)=0.3953 (10 histo-
grams) and S(8)=0.3708 (16 histograms)l, we note
that they agree with the equation S(L)=S(e0)+L ¢
x1In6, which would predict that S(e0)=0.3673. This
equation is also in reasonable agreement with the exact
number of states for an L =2 lattice (113.3 vs 126).

We also examined the peaks in the specific heat at the
critical point and found evidence for a divergence, as
shown in Fig. 1. The approach to the asymptotic behav-
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FIG. 1. Specific heat of the d =3, g =3 Potts antiferromag-
net as a function of temperature for L =4, 8, and 16. The con-
tinuous functions in both figures were obtained from multiple-
histogram analyses (Ref. 27). The run lengths in MC steps per
site (and the number of runs used for the multiple-histogram
analysis) are, respectively, 3x10° (10), 1.5x10° (14), and 10°
9).
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ior seems to be rather slow, and the peak in the specific
heat first moves toward lower temperatures as L in-
creases (Tpeak=1.212 at L=8), and then rises slightly
for larger systems. Our best estimates for the transition
temperature and the critical exponents comes from a
scaling plot for the susceptibility, shown in Fig. 2.
We find 7,=1.225+0.005, with y=1.27+0.05 and
v=0.631+0.04. These exponents are consistent with
those of either the d =3 Ising- or XY-model values.

Below T., we found a strong dependence of the order
parameter on the size of the system, in rough agreement
with Ono.'? However, we differ with Ono’s conclusion
that (M)(L =) =0 with a massless phase below T..
Instead, we find that (M) approaches a nonzero value as
1/L below T.. This is certainly more consistent with a
finite value of v than a line of fixed points would be. We
also found that below 7., the staggered susceptibility
diverges proportional to L. Both behaviors are quite
different from that of ferromagnetic Potts models, but
are identical with the predictions of the spin-wave ap-
proximation for the XY model below T,.

At the critical temperature, we observed the correla-
tion time to grow approximately as L% while for the
Metropolis MC simulation we found that it grows as L?2.
However, below T., where the correlation time is usually
size independent, even our algorithm shows a strong size
dependence, as if the low-temperature phase exhibited
critical fluctuations as suggested by Ono. '?
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FIG. 2. Scaling plot for the d =3, ¢ =3 Potts antiferromag-
net of the susceptibility times L”" as a function of (T —T.)
xL 7, using T.=1.225, y/v=2.02, and v=0.63, for L =4, 8§,
and 16.

It is easy to see that if a “vortex,” like that introduced
by Kolafa,?! appears in a two-dimensional slice of a
three-dimensional configuration, it must actually be part
of a closed vortex line. We suspect that such vortex lines
play a role in mediating the phase transition.

Some further applications of our simulation method
are already apparent. Two- and three-dimensional anti-
ferromagnetic Potts models with ¢ = 4 are being simu-
lated. The addition of second-neighbor ferromagnetic
interactions gives a rich phase diagram, but presents no
problems to the method, since it does not introduce any
additional frustration. Simulations on other lattices
(such as bcc) produce other types of transitions. It is
also possible to study the antiferromagnetic Ising model
on a triangular lattice with antiferromagnetic nearest-
neighbor interactions and ferromagnetic next-nearest-
neighbor interactions (both can be anisotropic), by up-
dating the spins on two of the three sublattices.
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Note added.— Since we completed this work, Park and
Widom>? have calculated the exact value of y/v=5/3 for
the d=2 antiferromagnetic Potts model at 77=0. This
confirms our value of y/v=1.666(2). Park and Widom
also determined the finite-size correction for S(7=0) in
two dimensions to be L ~2In2.93577965. . ., correcting
our suggestion that it might be L ~2In3. (The small
difference is within the statistical errors.) On the other
hand, for the three-dimensional case, where we suggested
that the finite-size correction to S(7=0) goes as L ~*
xIn6, new work by Borgs and Imbrie*® suggests that,
below T, the coefficient is just the logarithm of the num-
ber of phases, which would mean that our speculation is
indeed correct. Data taken since we submitted this pa-
per have provided slightly more accurate estimates for
the d =3, three-state Potts model: 7,.=1.2256 % 0.0005,
y/v=1.97%0.03, and v=0.66 = 0.03. These exponents
agree somewhat better with those of the XY model. Fi-
nally, we call attention to new related work by Ueno,
Sun, and Ono** which describes MC simulations for
d=3 and ¢ =3-6. They used standard MC simulation
methods with lower statistics than ours, and came to the
conclusion that both g =3 and 4 are in new universality
classes. This disagrees sharply with our results, which
are most consistent with the g =3 model being in the XY
universality class.
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