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Nucleation of Bubbles in Liquid Helium at Negative Pressure
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We consider the rate at which bubbles form when a negative pressure is applied to liquid He. We
show that at a critical pressure P, of about —9 bars, the liquid becomes macroscopically unstable and
the barrier against nucleation of bubbles becomes zero. The tensile strength of liquid helium is calculat-
ed as a function of temperature allowing for these eA'ects.

PACS numbers: 67.20.+k, 47.55.Bx

How large a negative pressure can be applied to liquid
helium before bubbles form? This is determined by the
rate at which bubbles nucleate, either over the nucleation
barrier as a result of thermal Auctuations or via quantum
tunneling. There has been considerable interest in this
topic' because of the possibility that at low temperatures
the nucleation rate, and hence the tensile strength, might
be determined by the quantum tunneling rate. It has
been predicted that quantum tunneling should dominate
at temperatures below 0.3 K, and that in this tempera-
ture range the tensile strength should be more than 15
bars, i.e., bubbles will not form until the pressure is less
than —15 bars. In this Letter we show that before this
pressure is reached He becomes macroscopically unsta-
ble. We present a calculation of the nucleation rates and
tensile strength allowing for this effect.

Currently, the best information about the equation of
state of liquid helium at T 0 K comes from the mea-
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surements of the sound velocity c as a function of pres-
sure P made by Abraham et al. From these extremely
accurate data one can find P(p) and E(p) (p is the den-
sity, E is the internal energy per unit mass) by standard
thermodynamic relations. To determine the equation of
state of helium for negative prcssure, we first extrapolate
the c(P) data for positive P into this region. One can
summarize the results of attempts to do this as follows
Simple polynomial fits do not lead to consistent estimates
of c(P) for P ~ —2 bars. Pade approximants do better
and suggest that c goes to zero at around —10 bars (+ 2
bars) with a fractional power law. At first sight this be-
havior is surprising, but actually it is to be expected even
on the simplest model for the equation of state. The
pressure vanishes at the equilibrium density of 0.14513
gcm and must also be zero at p-0. Thus, at some
density p, between 0 and po the pressure must have a
maximum negative value P, . If we assume for the mo-
ment that E is an analytical function of p we can use the
relations P -p BE/Bp and c BP/Bp to show that for p
slightly larger than p,

P —P, cL (p —p, )',
ccs: (p —p )'

Consequently, the second velocity goes to zero as
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FlG. l. Plot of c4 (c sound velocity) vs pressure. Data are
from Ref. 3. Solid line is a Pade fit. Because of the large num-

ber of data points at low P not all points have been plotted.

Thus, one should be able to make an extrapolation of c
into the negative pressure range more reliably by making
a Gt of c" as a function of P. We have done this using
several methods (Pade and polynomials of various or-
ders) and the results are reasonably independent of the
method. In Fig. 1 we show a 2-2 Fade fit to the experi-
mental data. P, is found to be —8.9 bars, and we be-
lieve this is accurate to about + 1 bar. The critical den-
sity is 0.11 gem and at this density the internal energy
per particle is estimated to be —6.5 K per particle.

The vanishing of the sound velocity means that the
liquid becomes macroscopically unstable at P„i.e., un-
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close to P, (see Fi~. 2). In this regime the bubble size
goes as (P P,—)

From the energy barrier we can calculate the nu-

cleation rate using

(8)

For simplicity we take the prefactor to be the product of
an attempt frequency kT/h with a density of nuclei
equal to the reciprocal of the volume of a sphere of ra-
dius 10 A (roughly the bubble size). This gives the re-
sults shown in Fig. 3. To obtain the effective tensile
strength one has to consider the experimental situation.
Suppose a negative pressure is applied to a volume V of
liquid for time i. Nucleation of a bubble is likely to
occur if I Vr is of the order of 1. Thus, the tensile
strength is the magnitude of the pressure at which this
occurs. We show this in Fig. 4 for Vr equal to 1 and
10 ' cm sec. Because I rises so rapidly with increas-
ing i P i, the difference in the tensile strength for the two
different values of Vi is fairly small. We include in Fig.
4 the tensile strength based on the ideal-bubble value for
AF [Eq. (5)]. As already discussed, this gives a strength
which increases very rapidly as T is lowered.

We have also considered4 the effect of quantum tun-
neling through the barrier. In earlier theories' this was
assumed to be the process that limited the rise in the ten-
sile strength at low temperatures, whereas it is now clear
that this rise is limited by the finite value of P, . We es-
timate that the effect of quantum nucleation is limited to
the small region of the P-T plane below =0.3 K and for
P very close to P, . Thus, it will be extremely hard to
study this quantum nucleation since controlled and accu-
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rately known pressures near P, are required.
The current experimental situation is as follows. Most

of the early measurements of the tensile strength gave
very low values. This has been attributed' ' to the use
of large experimental volumes V that were likely to con-
tain vortices or electron bubbles (produced by cosmic
rays, for example). Recently, much better measure-
ments have been made by Nissen et al. , who used an ul-

trasonic technique to study a volume of roughly 10
cm for times of the order of 10 sec. They obtained
tensile strengths in the range 6 to 8 bars for tempera-
tures decreasing from 2.2 down to 1.6 K. They estimat-
ed that the error in determination of the strength was
less than 20%, but the uncertainty may actually be
larger than this because they have not allowed for the
peculiarities of the equation of state for negative pres-
sures that we have discussed here. In the temperature
range 1.6 to 2.2 K the difference between the theory
presented here and the earlier calculations is not large
enough for the experimental data to discriminate be-
tween the two theories (see Fig. 4). However, it is clear
that application of the same experimental technique at
lower temperatures would allow a clear distinction to be
made and provide a test of our estimate of P, .

Finally, we mention some interesting related topics.
In He the sound-velocity data' are not as accurate, and
our best estimate of P, is —3 bars (~ 1 bar). Both in

He and in He the analysis of the sound velocity sug-
gests that c may go to zero as (P P, )" with v s—lightly
larger than 4, around 0.30-0.32. This would indicate
that near the instability point the energy may not be an
analytical function of density, but we know of no theory
of this for a quantum system at T 0 K.

In summary, we have shown that at a pressure of ap-
proximately —9 bars liquid He becomes unstable at
long wavelengths, and we have calculated how this
affects the rate of nucleation of bubbles in the liquid.
Measurements of the nucleation rate at low tempera-
tures (T~ 1 K) would test the theory and provide new

insight into the equation of state of liquid helium.
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FIG. 4. Calculated tensile strength of liquid helium as a
function of temperature. Solid lines are the results of the full
calculation based upon Eqs. (6) and (7). Dashed lines show

the tensile strength assuming that the critical nucleus is an
ideal bubble [Eq. (5)]. A, A' and B,B' are for products of ex-
perimental time and volume of 1 and 10 ' cm sec, respective-
ly.
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