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A novel form of the free-string field action is proposed for both the closed bosonic string and the

heterotic string.

PACS numbers: 11.17.+y

To study the dynamics and the symmetries of string
theory, string field theory seems to be a natural starting
point. For this reason, string field theory has attracted a
lot of attention since the seventies. More recently, major
efforts have gone into the covariant formulation of string
field theory. Following Siegel’s suggestion,' the covari-
ant action for the open bosonic string field theory was
written down by Witten? and investigated by many
groups.~® However, the covariant formulation of closed
string field theory turns out to be much more difficult
than expected. In terms of the operator formalism of
string theory, open strings and closed strings are very
closely related. Hence many attempts of closed string
field theory formulations are various extensions of the
open-string formulation. So far, none of the covariant
formulations proposed can reproduce both the four-point
scattering amplitude and the one-loop diagrams, which
are necessary requirements for a consistent formulation.
Since the heterotic string offers the only hope to describe
nature and it is a closed-string theory, it is important to
continue the search for the covariant formulation of
closed-string field action.

The difficulty of the covariant formulation of closed-
string field theory can be seen in the following way.
Given any formulation, one may use it to calculate both
the four-point scattering amplitude and the one-loop dia-
grams. All formulations proposed so far invariably
failed to reproduce the known results, in particular,
the covering of the moduli, as discussed clearly by
Zweibach.” It is well known that the moduli are associ-
ated with the propagators; i.e., the presence of each
propagator in a diagram introduces a complex modulus
and there are no moduli associated with the vertices.
This suggests that the propagator is incorrect, and hence
the kinetic term in every formulation of closed-string
field theory proposed so far needs modification. In fact,
after gauge fixing, all proposals yield essentially the
same propagator; hence, it is not surprising that all of
them fail.

Let us examine the reason for the failure in more de-
tail. To be specific, let us concentrate on the one-loop di-
agram, say, the partition function or the one-loop dilaton
tadpole diagram. It is well known that the integration
region is the fundamental domain in the complex =
plane. In the various formulations examined in Ref. 7,

the propagator essentially involves a projection operator
P:
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where bo (bo) are the antighost zero mode for the left
(right) mover. In terms of the complex modulus
7=(71,7), p=exp(— 1,). For example, a typical kinet-
ic energy term in the free-string field theory® which gives
the above propagator is given by

s=f axabdc ok

- f dX dbdc ®(coQ+20Q)PD, )

where P is the same projection operator in Eq. (1),
0(0) is the Becchi-Rouet-Stora-Tyutin (BRST) opera-
tor for the left (right) mover, and ¢o (Gp) is the zero
ghost mode for the left (right) mover. @ is the closed-
string field. Note that Q2=02=0. After gauge fixing
to the Siegel gauge, one obtains the propagator in Eq.
(1). There are clear problems with this propagator. It
vanishes whenever the left-right levels do not match (i.e.,
when the L¢ value differs from the Ly value), indepen-
dent of the value of 7,. In particular, the integrations of
71 and 7, factorize; i.e., the domain of integration of 7; is
independent of 7,. This means the boundaries of the in-
tegration region are straight lines parallel to the z; or 7,
axis in the 7 complex plane. However, the fundamental
domain in the complex 7 plane has a boundary which
correlates 7, and 75, namely, | z| =1. Hence, the parti-
tion function following from Eq. (1) cannot have the
correct covering of moduli. A priori, it is still possible
that, in closed-string field theory, the one-loop tadpole is
the physically relevant quantity, not the partition func-
tion. However, a careful analysis in Ref. 7 shows that
the one-loop tadpole diagram using the above propagator
cannot give the correct covering of the moduli, indepen-
dent of the details of the form of the interaction vertex.
On shell, the projection P provides the necessary level
matching for physical states. However, off shell, the pro-
jection operator P seems to prevent the correct covering
of the moduli. It is natural to ask if there exists a propa-
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gator which has different off-shell properties from that
given in Eq. (1), and what is the corresponding kinetic
term in string field theory. Of course, this new kinetic
term must reproduce the correct physical spectrum. In
this paper, such an alternative form is proposed. Al-
though the interaction vertex remains to be constructed
and the covering of the moduli remains to be checked, it
is already interesting that a totally different kinetic term
can be written down. As we shall explain, the motivation
for this new form actually comes from an examination of
the properties of tree N-point scattering amplitudes. In
fact, the properties of the scattering amplitudes provide
some guidance on the form of the interaction vertex.
The free closed-bosonic-string field action is given by

S= f TOKD, 3)
where
K= —E‘QQ_— . 4
sinlz(Lo+ Lo)] @)

Since this action is quite novel, let us explain some of
its properties. The action is obviously invariant under
the gauge transformation 6® =QA+ QA since Q, 0, Lo,
and Lo all (anti)commute, and Q2=0, 0*=0. Hence,
we can go to the Seigel-type gauge where bo® =b®d =0.
The gauge-fixed equation of motion is

Ro=—2rcotololo g 5)
sinlz(Lo+Lo)]

Recall that Lo=p?/2—N and Lo=p?/2 — N, where N
(N) is the left (right) mover excitation number and p is
the momentum. Consider the case when L is approach-
ing zero while Lo=p?/2—N, then p?/2— N while
Zo—> N — N, SO

sinlz(Lo+Ly)]1— (—I)N_NZn[};—Z—NJ 6)

so that the zero from Ly is canceled by the zero from the
denominator. Therefore K®=0 if and only if L¢®
=L,®=0. Hence, on shell, Eq. (5) will reproduce the
correct spectrum. It is possible that K has an extra
phase factor expliz(Lo+L)].

The corresponding gauge-fixed propagator is given by

Al boEoSiﬂ[lt(Lo'i‘Eo)]
27[LOZ0 '

The pole structures of this propagator are identical to
that of the standard propagator in Eq. (1). However,
their off-shell properties are very different; in particular,
the propagator in Eq. (1) vanishes for off-shell states
N=N while the new propagator in Eq. (7) does not van-
ish. On the other hand, the new propagator has zeros
whenever p? hits integer values, due to the sine factor.
Note that, in_ the s channel, sin(zs)=sinlz(Lg
+Lo)1(—1)¥*N for any state in the system.

@)

It is important to point out that the new propagator
given in Eq. (7) is motivated by an examination of
closed-string tree amplitudes. Recall that a general V-
point closed-string tree amplitude can be written as a
finite sum of a product of two open-string tree ampli-
tudes.® For example, let us consider the four-point am-
plitude, which clearly illustrates our point,

A (s t,u) =sin(ms ) A" (5,0 ) AR (s,u),  (8)

where A" (s,t) has poles in (s,z) channels while
AR (s,u) has poles in (s,u) channels; the double poles
in the s channel are precisely canceled by the sin(zs)
factor. For N-point amplitude with N —3 propagators,
there are naturally V — 3 sine factors to remove possible
double poles in the 1/LoLo factors coming from the
operator formalism of the corresponding open-string am-
plitudes for left and right movers. For a heterotic string,
A% (s,t) is bosonic and A28 (s,u) is supersymmetric
in Eq. (8).

The new kinetic term is nonlocal. It is precisely this
nonlocal property that results in the zeros in the ampli-
tudes whenever sin(zs) vanishes. Note that the vertex
for left movers ¥, and the vertex for right movers Vi
must have a relative SL(2,C) transformation so that the
cross channels have only single poles. This SL(2,C)
transformation is closely related to the twist operator in-
troduced long ago.!® This imposes a stringent condition
on the construction of the interaction term.

The closed-string field ® can be defined in terms of a
direct product of two open-string fields:

d)-V’left(x;uame9C)Wright(xw é_Xy,B,E) Y (9)

where ys; is defined in Refs. 4 and 6 in the operator for-
mulation for the open-bosonic-string field theory, where
0X,, b, and c are functions of the complex variable z.
Similarly yrigne can be defined, except the variables are
now functions of z. For any given tensor field f(z) of di-
mension d, let us define

fn _ﬁ ‘5%2"+d_1f(2)

and similar definitions for the antiholomorphic fields.
Now we can introduce the Fourier modes a,, b,, ¢,, @,
b,, and ¢,, where 8.X, b, and ¢ have dimensions 1, 2, and
—1, respectively. The only common coordinates in ef
and yigne are the position x, and the momentum opera-
tor ap =ap.

Let us define the SL(2,C) vacuum |0) to have zero
ghost number.® Then the ground state | Q)=¢c;|0)
and the momentum eigenvector is given by |p)
=explipX(0)]1] @), where ao|p)=p|p). Now, we can
write out explicitly the string field ®, whose total ghost
number is 2 units. In momentum space it is

o=d(1,1)+9(2,0) +D(0,2)
+oG,—1)+d(—1,3)+ - -, (10)
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where ®(j,2 — j) has a ghost number j for the left mover and 2 — j for the right mover;

o(1,1) ={s()+ G, (plat a2 1+ U (p)a‘cob -1 +V,(p)a’1Eob —1+w(p)cob —180b -1+ - - - } | p), 11)

®(2,0) ={n(p)c—1b -1+ A, (p)coa’ b1+ - - - }|p),

©(0,2) ={o(p)b—1c-1+B.(p)b 1@~ co+ - - } | p),

(12)

and so on. Here s(p) is the tachyon; G,,(p) contains the graviton and the antisymmetric tensor field. Fields whose left
and right levels do not match may also be included in the above formulas. Since the BRST operator has unit ghost
number, and the conformal matrix elements vanish unless they have 3 units of ghost number for both the left and the

right movers, the action becomes

s=r fo0,0—22 o0, +02,0—22 002+ -- . 13

sinlz(Lo+Lo)]

It is interesting to work out explicitly the kinetic term
for the massless sector. Let us consider for the moment
the first term. Keeping only up to quadratic power in
momentum p, it is straightforward to show that all fields
in Eq. (11) except G,,(p) are auxilliary fields and can be
integrated out. Besides the usual kinetic energy terms
for the antisymmetric tensor field By, (p) and the gravi-
ton h,,(p), we also have a nonlocal term corresponding
to the linearization of fR(3%) 'R, where R is the
Riemann scalar in Einstein theory. It is known that in
string theory, the dilaton field D(p) couples to R(p). In-
tegrating out the dilaton field introduces such a nonlocal
term.'! Where is the dilaton field D(p)? The only other
term in the action S that contributes to the massless sec-
tor is the second term in Eq. (13) where the string fields
®(2,0) and ®(0,2) are given in Eq. (12). Here 4, and
B, are auxilliary fields while the fields with a kinetic
term take the form op?n. Integrating out the auxilliary
fields precisely cancels out the above term and no
Qynamical field is left. However, if we now demand that
h,, and the fields in Eq. (12) mix in a way such that no
nonlocal term is left behind after all auxilliary fields have
been integrated out, we obtain the standard action for
B,., the graviton h,,, and the dilaton D(p), where
[f =(o+1)/V/2]

e PuPv
h;w -h/.w+ la;w —#_2 f’
(14)
D=f+ [5,,0— Pube 1.
p

The kinetic energy term for heterotic string field
theory is also easy to write down. Borrowing from
Witten’s formulation for open superstrings, 2

K= 2”‘Qbosonicésu5crstring (15)
sinlx(Lo+ Lo)]

and @ = icriPright, Where rigne = (a,¥) as given in open
superstring. Here a is the Neveu-Schwarz field and ¥ is
the Ramond field. For the right mover, an inverse
picture-changing operator Y must be inserted for the Ra-
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mond sector ¥. 2

The construction of the interaction term is technically
more difficult, and is under investigation. The first step
is to generalize the linear gauge transformation to non-
linear gauge transformation and then demand closure of
the gauge transformations. This step can be achieved;
however, to obtain the correct interaction terms remains
to be seen. In summary, we find it intriguing that the ki-
netic term of closed-string fields can be written in a non-
local form. In fact, it was argued by Woodard!3 that a
nonlocal kinetic operator is necessary for the correct loop
diagrams. Of course, as discussed in Ref. 14, a proper
formulation of string field theory probably requires an
enlarged configuration space for string fields. However,
the construction described here can be generalized easily
for the new configuration space.
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