ERRATA

Corrections to the Fermi Matrix Element for Superallowed β Decay. W. E. ORMAND and B. A. BROWN [Phys. Rev. Lett. 62, 866 (1989)].

Some uncertainties appearing in Table II are incorrect, as are the quoted χ^2/ν values and the THH average $\mathcal{F}t$ value. The correct table is as given below.

Nucleus	ft	δ_R (%)	δ_C (%)		Ft Ft	
			OB	THH	OB	ТНН
¹⁴ O	3038.1(23)	1.53(1)	0.19(9)	0.33(3)	3078.7(36)	3074.4(25)
^{26m} Al	3034.5(14)	1.47(2)	0.24(10)	0.34(4)	3071.7(34)	3068.6(20)
³⁴ Cl	3052.0(29)	1.45(3)	0.48(10)	0.85(7)	3081.4(44)	3070.0(37)
^{38m} K	3045.1(26)	1.44(3)	0.49(14)	0.70(7)	3073.7(51)	3067.3(35)
⁴² Sc	3048.7(63)	1.46(4)	0.39(9)	0.48(6)	3081.1(71)	3078.4(67)
⁴⁶ V	3043.7(22)	1.46(4)	0.21(10)	0.40(6)	3081.6(40)	3075.7(31)
⁵⁰ Mn	3039.9(40)	1.46(5)	0.28(10)	0.43(9)	3075.6(53)	3071.0(51)
⁵⁴ Co	3044.7(23)	1.45(5)	0.35(10)	0.60(6)	3077.1(42)	3070.3(33)
Avg					3077.3(15)	3071.2(11)
χ^2/v					0.80	1.16

TABLE II. List of ft values, corrections, and "nucleus-independent" $\mathcal{F}t$ values.

On p. 868, top of the second column, the sentence "The THH corrections. ..." should read "The THH corrections give $(\mathcal{F}t)_{avg} = 3071.2 \pm 1.1$ sec with $\chi^2/\nu = 1.16$ (C.L. = 32.1%), while the corrections reported here yield $(\mathcal{F}t)_{avg} = 3077.3 \pm 1.5$ sec with $\chi^2/\nu = 0.80$ (C.L. = 58.8%)."

On p. 868, second column, first sentence following the equation, the value of $G_{\mu}/(\hbar c)^3$ should read $G_{\mu}/(\hbar c)^3 = 1.16637(2) \times 10^{-5}$.

Eigenvalues of the S Matrix ROGER G. NEWTON [Phys. Rev. Lett. 62, 1811 (1989)].

Whereas its *eigenvalues* are continuous, there is no proof that the *eigenfunctions* of the S matrix are continuous at an energy where it has 1 as an eigenvalue; i.e., where one of the eigenphase shifts vanishes $(mod\pi)$. That is because at every energy, 1 is an accumulation point of its spectrum. Therefore, the correct reading of Theorem 2.2 is as follows:

Theorem 2.2.— Each eigenphase shift $\delta_{ln}(E)$ may be defined so as to be continuous, to vanish at infinity, and to satisfy the equation

 $\delta_{ln}(E=0) = \pi(\mathcal{N}_{ln}+v),$

where \mathcal{N}_{ln} is the number of bound states associated with (l,n), $v = \frac{1}{2}$ if l = 0 and there is a half-bound state, and v = 0 otherwise.

Nothing essential is lost by this change. Details and proofs will be published in the *Annals of Physics*.