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We reconsider the high-frequency susceptibility of partially magnetized uniaxial ferrimagnets. For a
demagnetized sample, effective-medium theory reproduces the exact result. Spontaneous resonances ap-
pear in a band of frequencies, in which the susceptibility follows a universal behavior. A new effect is
found; a weak magnetization m “digs a hole” in this resonant band, of width proportional to m. The for-
mulas we propose agree with experimental data, from which microscopic parameters can be obtained.
These also apply to the resistivity of a (2D) conductor in a random magnetic field.

PACS numbers: 76.50.+g, 75.50.Gg, 77.30.+d

The response of a ferro(i)magnet to a small transverse
oscillating magnetic field strongly depends on the overall
magnetization of the sample. In the fully magnetized
case, the susceptibility y(w) has a typical resonant
shape, corresponding to the damped precession of the
spins around the external magnetic field H at the Lar-
mor frequency o =yH (ferromagnetic resonance; y is
the gyromagnetic ratio, y/2x=2.8 MHz/Oe for a free
electron). The line is quite narrow, and its shape satis-
factorily accounted for by the Landau-Lifshitz-Gilbert
equation. The situation is markedly different in demag-
netized samples for which, surprisingly and despite
several efforts,'™* no convincing quantitative theory is
available. The imaginary part of the susceptibility of
demagnetized Ni,Zn;—,Fe,O4 (for example) exhibits
two rather well resolved peaks, corresponding to the exci-
tation of the internal modes of the system. The low-
frequency peak (10 MHz) generally depends strongly on
composition, porosity, and grain size, and is due to
domain-wall motion, a mechanism that we shall not dis-
cuss further. The high-frequency peak (=100 MHz) is
mostly insensitive to the grain size and is extremely
broad (much broader than the ferrimagnetic resonance
line): It extends up to the highest possible value of the
demagnetizing field, ®wmax = y47M, where M is the satu-
ration magnetization. It is due to spin rotations, and
very early was accounted for qualitatively by Polder and
Smit,! who argued that the presence of domains of vari-
ous sizes and opposite directions of the magnetization
would induce a full distribution of local demagnetizing
fields between 0 and 47xM and thus of resonances be-
tween min=7yH, (the anisotropy field) and ®max
=y(H,+4nM) (=y4xM). A quantitative study of this
effect amounts to solving Maxwell’s equations for the
magnetic field and induction in an inhomogeneous medi-
um, where the value of the local susceptibility depends
upon the orientation of the local magnetization (+ or —
in a uniaxial ferrimagnet). This problem is thus of much
the same nature as that of determining the average con-
ductivity (or diffusivity) of a random mixture (except for

the tensorial nature of the local magnetic susceptibility,
see below) which has received enormous theoretical at-
tention recently.>® Apart from systematic weak-disorder
expansions,’ the most successful and versatile approach
is the “effective-medium theory®® (EMT) which, albeit
approximate, is known to be exact in one dimension and
for weak disorder (for all frequencies),”® satisfies
rigorous bounds, '° and predicts qualitatively a nontrivial
phenomenon: percolation.®!! The possible applications
of EMT are so numerous (e.g., optical properties of fine
metallic particles,'? permeability of a mixture of porous
media, '? see also Refs. 5 and 6) that it is most important
to exhibit dramatic predictions of EMT (such as percola-
tion), and to validate them experimentally, at least quali-
tatively.

When the sample is completely demagnetized (m =0,
m is the reduced magnetization |m | < 1), EMT repro-
duces the exact result for two-dimensional domain struc-
tures (which is a very good approximation within one
grain). It predicts that a resonance “band” appears be-
tween ®min and wmax and provides a formula [Egs. (4)
and (5) below] for y(w) in the whole frequency range.
The generalization to partly magnetized samples predicts
a new effect: Resonances are inhibited in a frequenc
range of width 2zMm centered on @ =y(H,4xM)'/?
which means that a “hole” in the y"(w) curve appears
around ®. Such an effect could be experimentally
verified, and would thus test EMT in novel and rather
“exotic” situations. The formula we obtain for y(w) for
m =0 was in fact derived by Schlémann,* who explicitly
solved the problem in the case of a very particular (and
rather unrealistic) geometry of circular, concentric
domains. We thus provide a sound foundation for this
formula, which reproduces experimental results (Refs. 4
and 14, and below) quite successfully, and in fact allows
one to extract from them useful microscopic information
such as M, the relaxation time, and the anisotropy field.

We now present briefly the derivation of our results.
The problem is to obtain the effective permeability ;i of a
uniaxial magnetic sample broken into + or — domains
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of arbitrary cylindrical shape, with a local permeability
tensor 4+. A transverse time-dependent field h is ap-
plied to the sample. For sufficiently long wavelengths
(larger than the domain size), one has Vxh=0 and
V-4i+h=0, where the local Polder tensor in the plane
(x,y) perpendicular to the magnetization reads'’

. p Fix
A= 4k u (1)
with
4rMH,
p=l+y—— (2a)
@Omin — @
and
K"}'47[M—5—62—'—2. (2b)
@Omin — @

(We have neglected intrinsic relaxation, see below.)
Equation (1) simply arises from the linearization of the
equation of motion: 9, M=yHXM. Note that off-
diagonal terms change sign when z— —z. Assuming
that the domain structure is sufficiently random so that
the equivalent medium is rotationaly invariant, the EMT
averaging procedure states that the effective permeabili-
ty tensor /i satisfies the self-consistent equation depicted
in Fig. 1: A small + or — domain is immersed in a
homogeneous medium characterized by 4. This perturbs
the overall permeability by a small amount 84 + which is
calculated by solving Maxwell’s equations in the
geometry of Fig. 1 (in the quasistatic limit). £ is then
obtained by requiring that X+ — 7 (1 £ m )&+ =O0.

This approximation scheme yields our central result:
Writing

i |2 7,

ik a
one has
gl ilmp?— 2, (3a)
K=mxj/u . (3b)

Let us study the m =0 case first. From Egs. (3) and (2)
one gets

(H,+4zM)*— (o/7)2 |
HZ2— (0/7)?

=0, ’ (4b)

, (4a)

a=(u?—x

These, in fact, coincide with the exact results: k=0 fol-
lows from the z— —z symmetry, while (3a) can be
proven (for any m) due to a “duality symmetry” of two-
dimensional Maxwell equations (along lines similar to
Ref. 16). One can also invoke a general theorem of
homogenization theory in 2D which states!” that if the
determinant of the local permeability tensor g is con-

Y
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FIG. 1. Graphical representation of the effective-medium
equation: A small “impurity” is included in the effective medi-
um, and its contribution to the permeability must (to the
lowest order) average to zero. Magnetostatic interactions be-
tween domains are thus in a way taken into account.

stant over the sample (which is the case here since
A+ ="ji-), the determinant of the homogenized permea-
bility is equal to this constant value. Therefore (3a) in
fact relies and only relies on the very assumption of the
existence of an isotropic effective medium. It does not
apply, in particular, to a lamellar configuration of
domains: In this (1D) case one may show that, for small
intrinsic damping, the only resonant frequency is
@ = (@min®max) /2. EMT thus yields an exact result for
Eq. (3a) and is probably only an approximation for Eq.
(3b) (see Ref. 18).

From (4a) one directly obtains that the susceptibility
is purely imaginary for frequencies spanning the interval
[®min, ®max], while dissipation disappears outside this
range. This is quite an extraordinary result: The medi-
um is made of two components (which differ by
k— —x), each of which has only one resonance at m;n,
and one ends up with a dissipative medium in a whole
band of frequencies. The physical origin of this effect is
that a magnetic field along x excites a y component of
the magnetization through the off-diagonal element of /.
This y component in — domains is out of phase with the
neighboring + domains, and this creates uncompensated
magnetic charges at the boundaries: + and — domains
act in a sense as capacitances and inductances. The situ-
ation is analogous to the case of a (2D) mixture of an in-
sulator and a metal!? in equal proportion, for which the
effective permittivity is given by!® &=(emei€ins) /2. In
the infrared range, the metal has a negative permittivity
and the mixture is thus also characterized by “spontane-
ous resonances” (imaginary permittivity). We believe,
however, that magnetic materials are far more con-
venient for the experimental investigation of this peculiar
effect.

The analysis of Eqgs. (3) in the partly magnetized case
reveals that

u?—x?

#2_m2x.2

EZ-I‘Z

takes negative values only in a restricted interval of fre-
quencies, which for m <1, ®max>> ®Omin reads [omin, @
—2amyM], [@+2zxmyM,wmnax]. Furthermore, the sus-
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ceptibility is no longer diagonal, and the off-diagonal ele-
ments are linear in m for m <1, a result first obtained by
Rado® [(3b) in fact yields Rado’s result in the large-
frequency limitl. The above equation is correct only if
one can neglect the external field and the induced
demagnetizing field (of the order of NmM, where N is
the demagnetizing factor along z).

Two modifications must be included in the previous
theory to account quantitatively for experimental results
on demagnetized samples.

(a) Intrinsic dissipation can be phenomenologically
described by substituting iw by (iw —1/7) in the denom-
inator of Eqs. (2). (See Ref. 19 for a more precise dis-
cussion.) This will smear out the divergence at wmi, ap-
pearing in (4a) and will add a real part to y in the reso-
nance “band.” Namely, for ® < ®wmax,

s ﬂ)2"w3 )
H (02— w§)2+4w?c 2 r4zMo, (5a
— 2027 7!

- 4zM , (5b)
H (02— w§)?+4w?r 2 v
with o =w2in+1 "2

In particular, in the regime wo< @ < @wnax (reasonable
values are wo/27=20-50 MHz and y4zM =12000-
14000 MHz), one has

r=y8zM1 " Yw?, (6a)
I'=y4zM/ow. (6b)

Both the real and the imaginary part of the permeability
of insulating ferromagnets thus exhibit a wuniversal
power-law behavior in a rather wide frequency range.
Note also that Eq. (5b) shows that u' no longer takes
negative values: Interactions between domains have con-
verted a resonant response [Egs. (2)] into a relaxation
response [Egs. (5)].

(b) The z axis may vary in direction from grain to
grain. The simplest way to take this effect into account
is to neglect grain-grain magnetostatic interactions; the
angular average then simply multiplies the above results
[Eqs. (6)] by a factor %.* More generally, one may
leave this angular factor a as an adjustable parameter
(restricted to the range [0,1]) to allow for angular and
magnetic correlations. As an illustration, we have fitted
the well-known susceptibility of Nig36Zng¢4Fe2O4 ob-
tained by Verweel?? in 1964 in the range 80-1000 MHz,
where the domain-wall contribution is assumed to be
small. The laws (6a) and (6b) are obviously followed on
the log-log plot of the data (see Fig. 2, inset), from
which one obtains just by inspection ay4zM =10000
MHz and 2/t=40 MHz.?! From independent M mea-
surements?? (and taking into account the value of the
gyromagnetic factor? g==2.2), one finds a==0.73, which
is indeed close to %. The full theoretical curves for y'
and x" are compared to experimental points in Fig. 2.
Agreement is very good for both y' and x" simultaneous-
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FIG. 2. Verweel’s susceptibility data on NiZn (Ref. 20)
(dashed lines) compared with expressions (5a) and (5b) (full
lines). Inset: These data are on a log-log plot which makes ap-
parent the laws @ ~2and o ~! for ' and "

ly, except in the low-frequency part where a precise
determination of 7 is important and where the domain
walls certainly start to contribute significantly.!® The
same quality of fit has been achieved'® on other NiZn
compositions and MnZnFe;04. The sudden change of
behavior of y for wmax [see Eq. (4a)] is also very clearly
observed experimentally.?

A very interesting analog of the magnetic problem
presented here is the conductivity of a two-dimensional
conductor in a random magnetic field = B (or a mixture
of two conductors of opposite ratio of the carrier charge
to the carrier mass in a constant magnetic field). Denot-
ing o, as the cyclotron frequency, the local resistivity
tensor reads (in a Drude approximation)

-

P=po

1tiot .t
—w.7t l1tiot]|"

In a symmetrical configuration ({w.)=0), the average
resistivity is scalar and equal to

pl@) =poll+ (w.7)? — (07) 2+ 2iw7] V2.

In particular, for @.t>>1, the dc resistivity is much
enhanced, p(w=0)=pow.7; due to spontaneous reso-
nances, the relevant inelastic time is w. ! rather than 7.
Summarizing, we have proposed that a partially mag-
netized ferromagnet realizes a particularly interesting
and original “random” medium where “mixture” equa-
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tions could be neatly studied and tested. We have adapt-
ed EMT to this problem and showed that it predicts new,
nontrivial effects. It leads to the exact expression for
m=0. As first recognized by Schlémann* in a particular
case, a resonance band appears, terminating at y4zM,
which explains a well-known experimental fact named
“low-field losses” or “Polder-Smit resonances.!> For
small intrinsic relaxation, this resonance band would
nearly entirely disappear for a regular lamellar arrange-
ment of domains. The theory also predicts an ‘“absorp-
tion trough” for m>=0, of width proportional to m: We
claim that it would be a stringent test of EMT to evi-
dence this “antiresonance’” band. Conversely, compar-
ison with experiments allows one to extract from suscep-
tibility measurements on demagnetized samples values of
M, H,, and 7: This has recently been successfully tried
in Refs. 14 and 19. Note finally that EMT may be used,
along the same lines, to calculate the influence of in-
clusion of nonmagnetic phases. The theory for nonuni-
axial magnets and ferromagnetic films will be presented
elsewhere. !°

We wish to thank G. Damamme, G. Mur, and F. Mu-
rat for discussions, especially L. Tartar for drawing our
attention to Ref. 17, and D. Lepoutre and D. Autissier
for most useful comments on experimental data. We
have also benefited from remarks by E. Schlémann.

@Qn national duty. Permanent address: Laboratoire de
Physique Statistique, Ecole Normale Superieure, 24 rue Lho-
mond, 75231 Paris CEDEX 05, France.

ID. Polder and J. Smit, Rev. Mod. Phys. 25, 89 (1953).

2). Smit and H. M. J. Wijn, Ferrites (Philips Technical Li-
brary, Eindohven, 1959).

3G. Rado, Rev. Mod. Phys. 25, 81 (1953); Phys. Rev. 89,
529 (1953).

4E. Schlémann, J. Appl. Phys. 41, 204 (1970); J. Phys.
(Paris), Collog. 31, 443 (1971).

S5Electrical Transport and Optical Properties of Inhomo-
geneous Media, edited by J. C. Garland and D. B. Tanner, AIP
Conference Proceedings No. 40 (American Institute of Phys-
ics, New York, 1978).

6Proceedings of the Second Conference on the Electrical
Transport and Optical Properties of Inhomogeneous Media
[Physica (Amsterdam) (to be published)].

7B. Derrida and J. M. Luck, Phys. Rev. A 28, 7183 (1983).

8R. Landauer, in Ref. 5.

9D. J. Bergmann, Phys. Rep. 43, 377 (1978).

10Z. Hashin and S. Schtrikmann, J. Appl. Phys. 33, 3125
(1962).

11§, Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).

128, Berthier, Ann. Phys. (Paris) 13, 503 (1988).

13p, Magnico, J. P. Hulin, and E. Guyon (to be published).

145, C. Zhu, L. Zhao, F. P. Wen, and L. z. Meng, J. Appl.
Phys. 57, 3806 (1985); 61, 4139 (1987).

15D, Polder, Philos. Mag. 40, 99 (1949).

16K . Mendelson, J. Appl. Phys. 46, 917 (1975).

17G. A. Francfort and F. Murat, “Optimal Bounds for Con-
duction in Two Dimensional, Two Phase Anisotropic Media,”
Laboratoire d’Analyse Numerique, Université Pierre et Marie
Curie, Jussieu, report (to be published).

18Note that it does not coincide with the formula one would
naively obtain by applying the standard EMT formula to the
eigenvalues of the permeability tensor. The latter would lead
to Eq. (3a) but not to (3b)—instead one would get i =mx,
and hence a narrowing of the band, instead of a hole for
nonzero m.

193, P. Bouchaud and P. G. Zerah (to be published).

20J, Verweel, thesis, Philips, Eindoven, 1964, reproduced in
Ferromagnetic Materials, edited by E. P. Wolhfarth (North-
Holland, Amsterdam, 1986), Vol. 2, p. 193.

2I'This value of ™! is of the order of magnitude of yH,,
which is not unexpected in a demagnetized sample, where the
typical fluctuations of magnetic field should be =H, and no
dipolar narrowing should occur; see C. W. Haas and H. B. Cal-
len, in Magnetism, edited by G. T. Rado and H. Suhl
(Academic, New York, 1963), Vol. 1. It would be interesting
to compare this value with the one obtained in a ferrimagnetic
resonance experiment.

22R, Pauthenet, C. R. Acad. Sci. (Paris) 230, 1842 (1950).

1003



