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The chaotic dynamics from a nonlinear electronic circuit is shown to exhibit the universal topological
structure of maps on an annulus. This suggests that the corresponding universality class is large enough
to include physical systems. We suggest that low-dimensional strange attractors fall into a few classes,
each characterized by distinct universal topological features.

PACS numbers: 05.45.+b

Several routes to chaos in dynamical systems have
been proposed and analyzed in detail, the best known be-
ing the period doubling' and the quasiperiodic routes.?
At the onset of chaos, such dynamical systems exhibit
scaling, and certain qualitative and quantitative features
of the transition are universal.>”> Many experimental
systems are believed to make similar transitions to chaos,
with the path determined by evaluating universal
features of the transition that are unique to that path.®’
Some examples of universal quantities that can be used
for this purpose are the generalized dimensions* or
singularity spectra® of the attracting set and the trajecto-
ry scaling function® of the orbit at the onset.

Much less is known about dynamical systems beyond
the onset of chaos. Chaotic experimental systems relax
to regions of phase space with very complex structure
and zero measure. Generally such objects are fractal,
and have structure on ever smaller length scales. They
are called strange attractors, and are characterized by
metric invariants (which do not change under smooth
transformations) such as fractal dimension and Lya-
punov exponent. However, they are not universal, and
hence do not yield much detailed information about the
experimental system: e.g., how to model the dynamics.

An alternative class of invariants that can be used to
characterize a strange attractor is the set of all periodic
orbits.®'° Periodic orbits are topological invariants; i.e.,
any change of coordinates will not change the periodicity
of an orbit. Thus changing the point of observation or
the variable that is being observed in an experiment will
not change the cycle structure. This is important since

the characterization of the attractor should be robust.

The significance of the cycles is seen from the follow-
ing observations. First, since the strange attractor is the
set of points of the phase space visited by the orbit after
the transients have settled down, motion on it is ergodic.
Thus the orbit of any point P on the strange attractor
will make arbitrarily close returns to P. Because of the
smoothness and nonlinearity of the dynamics, one should
in general be able to move P by a small amount so that
the close return becomes exact: i.e., there is a periodic
point arbitrarily close to P. This means that the periodic
points are dense on the strange attractor. Since the
motion on the attractor is chaotic, these cycles have to be
unstable.

The second important observation is that the structure
of the strange attractor in the neighborhood of a periodic
point and the motion of points in this neighborhood are
determined by the tangent space of the periodic point.®
In particular, the eigenvalues give the local scaling ob-
served in strange attractors. The nonlinear attractor can
thus be considered as a collection of linear neighbor-
hoods about the periodic points. Since this is a descrip-
tion of all invariant local features of the attractor, it is
more desirable than a knowledge of averaged quantities
such as the fractal dimension or the Lyapunov exponent.
Further, the eigenvalues can be used to evaluate such
averaged variables of a strange attractor.®'? It has been
suggested that the set of periodic points and their eigen-
values are an optimal measurement of the invariant
properties of a strange attractor.® Moreover, the struc-
ture of the attractor can be described hierarchically by
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the cycles. Thus the gross features of the strange attrac-
tor can be captured through the short cycles while the
longer cycles are needed to describe the fine-scale fea-
tures.?

Recently it was shown'' that the periodic orbits of a
class of strange attractors are universal. It is thus possi-
ble to determine if a chaotic experimental system be-
longs to this class by analyzing the cycles. The present
Letter is a report of such a study. The experimental sys-
tem is a nonlinear electronic circuit to be described
below. From its properties at and below criticality, and
the structure of the chaotic attractor, we conjecture that
maps on an annulus should describe certain topological
features of the signal. We then use the universalities de-
scribed in Ref. 11 to confirm our conjecture.

The nonlinear circuit used in the experiment is shown
schematically in Fig. 1. The circuit is driven at a fre-
quency Q, and observed at a frequency Q,. The drive
signal is a sine wave from a Hewlett-Packard HP3325A
frequency synthesizer. The entire experiment is under
computer control and the data can be analyzed on-line to
distinguish between periodic, chaotic, and quasiperiodic
response.

If the effect of the diodes and inductances could be
neglected we would be observing a harmonic oscillation
of frequency Q, at a frequency Q,. Then the return
map would have the form

Xn+1=xn+ Q (modl) , 1)

where @ =Q,/Q,, and x, is the amplitude of the signal
at the nth time step. The effect of the full circuit can be
modeled by the addition of a nonlinear term giving

Xn+1=xp+Q —kF(x,) (modl) , )

where F(x) is a nonlinear function, and k is the intensity
of the nonlinearity. F(x) is chosen so that the right-
hand side of Eq. (2) is monotonic increasing for k <1
and will develop an inflection point when kK =1. Maps of
this form are a subclass of circle maps? that will exhibit
all the properties we study here.!' Equation (2) is not a
detailed model of the nonlinear circuit, but only captures
a few essential features of its evolution (its “circular” be-
havior). The theory of Ref. 11 gives topological conse-
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FIG. 1. Schematic representation of the experimental elec-

tronic circuit.
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quences of such features.

Orbits of Eq. (1) fall into two classes.? If Q is ration-
al they are periodic, while if it is irrational any orbit will
cover the interval ergodically. The average increment of
x per iterate (called the winding number) is @. When
0 < k <1 orbits of Eq. (2), for values of @ close to ra-
tionals (| @ —p/q| < 1/g?), mode lock to a cycle of ra-
tional winding number (p/q). Increasing k generally
leads to wider mode-locked regions, leaving ever smaller
regions of parameters where the motion is ergodic. The
set of parameters for which the map has a given rational
winding number is called an Arnold tongue.'? The form
of Arnold tongues for maps of type (2) is shown in Fig.
2. For k <1 the monotonicity of Eq. (2) implies that
the order of points is preserved under iteration, and that
the winding number of an orbit is independent of the
starting point.'? Hence nearby points cannot move arbi-
trarily far apart, and the motion is nonchaotic.

The parameter space of the electronic circuit is
mapped by calculating the winding number for many
different sets of control parameters. The structure of
Arnold tongues can be seen clearly, and is qualitatively
similar to Fig. 2.'® Criticality of irrational orbits can be
deduced either from the crossing of nearby rational
tongues or by studying the Fourier spectrum of the sig-
nal.® Critical orbits whose rotation number is o=(/5
~—1)/2 have been studied in detail,? and invariants of the
onset of chaos (e.g., generalized dimensions® and scaling
functions’) have been shown to be identical to maps of
form (2).

For k > 1 the winding number of an orbit of Eq. (2)
depends on the starting point, and hence nearby points
can diverge from each other, giving chaotic motion. The
signal from the electronic circuit shows the same behav-
ior. However, the experimental attractor is no longer
one dimensional, but contains foldbacks as seen in Fig. 3.
Since one-dimensional models cannot support such at-
tractors, Eq. (2) has to be generalized to higher dimen-
sions, for example, as

ry+1=br, —kF(@,),

3)
0p+1=6,F+Q+r,+ (mod1) ,

0

FIG. 2. The structure of the Arnold tongues for Eq. (2).
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FIG. 3. (a) An experimental attractor. (b) A strange attractor for Eq. (3). Its structure is similar to that of the experimental at-

tractor.

where b is the Jacobian of the map, and its inverse mea-
sures the effective dissipation. Maps of this form have
chaotic attracting sets like that of Fig. 3.!? Reference 11
shows that unstable periodic orbits on chaotic attractors
of such maps have universal features, and we look for
them in the experimental signal.

Certain points in the parameter space of Eq. (2) can
be defined topologically. For example, there are a count-
able set of points that are the crossings of two Arnold
tongues (other possibilities include the crossing of one
Arnold tongue with a period-doubling curve inside a
second Arnold tongue). In Ref. 11 a theory is developed
that gives all possible periods of cycles at the crossing of
two Arnold tongues, and the number of distinct cycles of
a given period. The results continue to hold for two-
dimensional extensions [e.g., Eq. (3)] if the effective dis-
sipation is large or equivalently b is small. For numeri-
cal examples the theory holds over a finite range of b (as
b increases beyond this range, the theory begins to fail
for crossings with large nonlinearity), and this leads us
to believe that some experiment will realize the same
universal behavior. For the experimental system the
crossings of Arnold tongues of low-order rationals (e.g.,
+ and %) occur at higher nonlinearity, and we do not
expect the results of Ref. 11 to hold there (we investigat-
ed many such crossings and found that some of the cy-
cles of Fig. 4 were absent). On the other hand, it is
difficult to estimate the orbits of large periods because of
experimental noise. Hence our comparisons will work
best in an intermediate region, and we assume that the
existence of the correct orbits is a signature that a sys-
tem belongs to the universality class of Ref. 11.

We consider the crossing of an Arnold tongue 7'; of
winding number o, (=p/q,) with a second Arnold
tongue T, of winding number w; (=p,/q>), where
w>> w,. For any set of parameters inside 7 the system
has two cycles of length q,. One of these, represented
symbolically as 4 [for maps of form Eq. (2) the symbol-
ic dynamics determines the cycles uniquely'']l, has posi-

tive stability while the second, represented as A, has neg-
ative stability. Similarly there are two cycles B (with
positive stability) and C (of negative stability) of length
q» for any set of parameters inside 7,. The periodic or-
bits present on the strange attractor at the crossing of T
and T, (see Fig. 2) are all possible combinations of A, B,
and C such that C is preceded by 4.!" Thus all available
cycles can be determined by the ternary tree structure
shown in Fig. 4. The result is universal for the class of
maps of the form (3), when b is sufficiently small, and
depends on the crossing only through A4, B, and C.

The unstable periodic points are estimated from a
chaotic experimental time series as follows.”'4 A point
belongs to an M-cycle if it returns after M iterates.
Similarly, an experimental point is nearly an M-cycle if
it makes a close return after M time steps. Conversely
(if the series is embedded in enough dimensions), a close
return implies the existence of a nearby cycle; i.e., there
is a periodic point of the underlying map in the neighbor-
hood of any close return of the experimental signal. For
fixed e (typically 2 to 3 orders of magnitude smaller than
the signal) we collect the points which return closer than
€ after M iterates. The collection of such points bunches
into distinct domains (for a series of 32000 points each
bunch typically had 50-100 points). Those further from
each other than n~2¢ are considered distinct bunches;
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FIG. 4. The ternary tree structure which gives all orbits of a
strange attractor on an annulus at the crossing of two Arnold
tongues.
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TABLE I. The periodic orbits lying on three strange attrac-
tors defined by crossing of Arnold tongues.

Crossing Period (level) No. expected No. found
(a) +-7r 15 (2) 30 30
19 (3) 38 38
26 (3) 52 52
23 (4) 46 46
37 (4) 74 73
() -7 18 (2) 36 35
25 (3) 50 51
29 (3) 58 58
32 (4) 64 63
40 (4) 80 79
© -7 7() 14 14
10 (3) 20 20
11 (3) 22 21
13 (4) 26 24
15 (4) 30 30
17 (5) 102 Many
19 (5) 38 37

each bunch is assumed to correspond to a periodic point
of period M, which is estimated as the mean of the
bunch. This averaging also reduces the effective noise by

a factor \/va, where NN, is the number of points in a
bunch.

We analyzed the experimental signals from several
crossings of pairs of Arnold tongues, embedding the
series in three dimensions. We determined the periods of
all cycles, and the number of distinct cycles of a given
period. In each case we extracted 4 or 5 levels of cycles
of the ternary tree structure of Fig. 4, and the results are
shown in Table I. For example, Table I, section (b),
presents the available cycles at the crossing of the 5 and
2 tongues. Thus the periods of cycles 4, B, and C are
7, 11, and 11, respectively. The second level of the tree
contains the cycles A4, BB, AB, and AC. The first two
are identical to 4 and B, and are not shown. Cycles AB
and AC both have period 18, and are the two 18-cycles
shown in Table I, section (b). Note that our algorithm
found only 35 cycle points, rather than the 36 expected.
We believe that this discrepancy arises because two
points of an orbit lie very close to each other. From Fig.
4 we observe that the third level of the tree consists of
cycles A4AA, BBB, AAB, AAC, BAC, and BAB. The first
two are not shown again. Cycles A4AB and AAC both
have period 25, and are the two 25-cycles shown in Table
I, section (b). BAC and BAB have period 29, and are
the two 29-cycles shown. We also find all the orbits of
the fourth level of Fig. 4. In the case of the 5 and
crossing we find all orbits up to level 5. It should be em-
phasized that not only did we find the correct number of
orbits shown in the table, but we also did not get cycles
that are not in Fig. 4. This leads us to the belief that the
dynamics underlying the chaotic signal from the circuit
belongs to the same universality class as Eq. (3).

4

We can compare the experimental signal and the mod-
els only at a finite set of points in parameter space. This
is because the theory is sufficiently simple only in a few
cases (e.g., crossing of two Arnold tongues), and because
the experimental noise limits the maximum period of cy-
cles that can be extracted from the chaotic signal. How-
ever, the agreement of the models and experimental re-
sults at several such points suggests that the models
should describe topological properties of the chaotic at-
tractors for an entire range of parameters. We thus con-
clude that the underlying dynamics for the signal from
the nonlinear circuit of Fig. 1 is in the same universality
class as that of Eq. (3).

In conclusion, we suggest that strange attractors can
be categorized into several classes which can be charac-
terized by universal topological features (unlike the onset
of chaos, which is characterized by both topological and
metric features). We have identified one such class, and
shown that an experimental system belongs to it. We be-
lieve that this is the first detailed characterization of
universality in an experimental system beyond the onset
of chaos, and that other chaotic systems can be analyzed
in the same spirit.
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