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Black-Hole Decay and Topological Stability in Quantum Gravity
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We show that black holes are topologically stable under quantum fluctuations but unstable under
quantum emission and absorption of gravitons. The probability of emission behaves as exp[ —a(Mf
—M;)], where M; and Mf are the masses associated with the initial and final states, and a is a positive
constant of the order of 1. As the black hole loses mass it evolves towards a state corresponding to a
black hole of very small mass that cannot be distinguished from a pure graviton state.
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A consistent theory of quantum gravity should at least
give an answer to the following problems': (1) dynam-
ical fluctuations of the spacetime topology; (2) quantum
decay of black holes (BH's); and (3) singularities in gen-
eral relativity. Classically, the action is stationary with
respect to local variations of the geometry, in the neigh-
borhood of a solution of Einstein's equations with a fixed
topology. Quantum mechanically, however, there is no
reason for the geometry not to tunnel between two dis-
tinct topological configurations, in spite of the fact
that changing the topology may imply a singular trans-
formation in the spacetime manifold. This means that
the system might have to go through an infinite energy
or action barrier.

On the other hand, it is generally accepted that al-
though BH's are classically stable, they can decay via
emission of quantum-mechanical particles. ' It must be
emphasized that this effect is inferred from a semi-
classical approximation where the gravitational field is
classical. If the gravitational field itself were to be quan-
tized, one should also expect a BH to decay into gravi-
tons. To the best of our knowledge no suitable model
has been proposed to analyze this issue. The basic obsta-
cle in this case is the fact that the number of degrees of
freedom in the BH geometry is so restricted by the sym-
metries imposed on the system that no process can take
place. '' This could be circumvented by the introduction
of new dynamical variables enlarging the phase space
containing the BH geometry.

In the context of the Wheeler-DeWitt approach to
quantum gravity, ' we examine the above-mentioned is-
sues for geometries that in principle allow for topological

transitions and quantum decay of BH's.
Singularities are predicted in classical gravity to occur

in two situations: At the beginning of the present expan-
sion of the Universe (big bang) and in the collapse of
isolated regions of high-mass concentration (BH's). ' It
has been widely discussed whether quantum effects can
avoid singularities in cosmological solutions. ' In the
BH case it is not known whether the singularity will
eventually disappear or will stabilize in a mini-BH of
finite size. This question is clearly related to the quan-
tum decay of BH's and it will be treated in the model
proposed here.

Let us consider the Schwarzschild-type geometries de-
scribed by

ds =N (r, t)dt —d, (r, t)dr
—r 'K'(O, t ) (dO'+ sin'Odv '), (1)

where 0 (r, t ) = [X(t) —2M/rl 'l, with M a constant. This
corresponds to the simplest extension of the static BH
geometry which allows for dynamical Auctuations suf-
ficient in the quantum version of the theory, topological
changes, and evolution of BH's. In general, X and K are
taken as time-dependent functions. For particular
choices of N, X and K, the metric (1) describes classical
solutions. If N=h, and X is a constant, the case k&0,
K =1JX is a Schwarzschild BH; X =0, K =1/sinO is a
Kasner universe; X &0, K=tanhO/4 —X a Bianchi III
universe. In particular, we note that for different values
of k these configurations have different topologies, at
least in the cases for which the classical solutions exist.

The Hilbert-Einstein action for the metric (1) reduc-
es' to Arnowitt-Deser-Misner action' '

r2S =4trap J N

~ ~

kECK N+—(XK —1) dr dt+ surface terms.
p3

(2)

Clearly, X and K are the only dynamical degrees of freedom and N is a Lagrange multiplier. Starting from action (2)
above, one can calculate the canonical momenta z& and z~, and construct the Hamiltonian of the theory. Since N is the
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N& dr =0, (3)

where

e= — —~,~, + ~, ——(~K —1)1 ~', 1

K &~ h,

+ surface terms . (4)

We remark that for any choice of N, a classical config-

Lagrange multiplier, its canonical momentum is a pri-
mary constraint ~~ =0. The preservation in time of this
constraint, in turn, means that the Hamiltonian is itself a
constraint, '

uration must satisfy the constraint (3). Moreover, in the
limit r

XK —1 =0, (s)

and since this must hold for any r, Eq. (5) is a necessary
condition for classical configurations. ' In what follows,
we opt for the gauge N=A, which makes the contribu-
tion of the surface terms at r =2M/X and at r ~ can-
cel each other. '

According the Dirac's program, quantum theory is
constructed by replacing the canonical momenta by
re = —i 8/N, rr.~ = —i d/dK, and the constraint (3) by
the restriction on the Hilbert space of wave functions
y(X, K),

Hy=
4K 2 R, R. 3 c)K

+—K ~ + (~K' —1) y(X,K) =0. (6)

o g 2(p+ cr)/3

Eq. (6) reads

(7)

a2
+U(p, a) y(p, cr) =0,

cl a'
(8)

where

The Wheeler-DeWitt equation (6) describes the evolu-
tion of the amplitude y(X, K) on the minisuperspace of
metrics (1). The order for the operators in (6) was
chosen so that the kinetic term would be the Laplace-
Beltrami operator on the minisuperspace. ' %'e have
also subtracted an infinite constant from 0 which corre-
sponds to the infrared contributions to the zero-point en-

ergy, and which is identically zero in the case XK
—I =0. We note that the boundary r =2M/k, k )0, of
the spacetime manifold arises from the need to have a
sensible classical theory as a limit, namely, the Hamil-
tonian density (4) as the generator of time evolution.
However, in the quantum regime the restriction k & 0 is
no longer necessary and the possibility of quantum Auc-

tuations of the signature and tunneling between diAerent
topologies is not excluded. Introducing new coordinates
(a.,p) in superspace through

In spite of (ii), the one-particle interpretation will be
useful for the analysis of topological stability but for the
discussion of BH decay one may adopt the point of view

of second quantization.
From (9) we observe that the potential U is analytical

throughout the plane (cr,p). U vanishes on the line 4p
+7o =0, that corresponds to the classical configurations
(5). Above this line U is negative and it approaches
—~ for p ~ or o. ~, and below this line U 0+
as p —~, and U~ +~ as a —~. We note that
the points on the line U =0 correspond to classical
Schwarzschild BH's of masses

MaH =M exp( —cr/2) (10)

decreasing monotonically with a (see Fig. 1). The solu-
tions of (8) can be chosen so that in the region p
they form a complete set of plane waves. There we can
prepare a wave packet and see its evolution in the p
direction, which plays the role of time for U&0. Actu-
ally, when p & 0 and U& 0, the potential is a slowly
varying function of p and one can approximately write

y —e ""p,(a), where p, (a.) satisfies the Schrodinger
equation

U( ) 1 6M 2( 4P/3 —5a/3 SP/3+ 2a/3 ) (9)
[—c)'/c)cr'+U(cr)] v( )cr=e'v, (cr) .

The above choice of coordinates is appropriate for the
BH sector, X & 0. A topological transition would be sig-
naled by the probability density approaching a nonzero
value as X 0.

The hyperbolic character of Eq. (8) has several
consequences: (i) The minisuperspace has a "light-cone"
structure; (ii) the probability density is not positive
definite, and the one-particle interpretation is not fully
consistent (Klein's paradox ). The light-cone structure
will be used to interpret i |1/Bcr and i 8/clp as energy and
momentum operators for the wave solutions of Eq. (8).

The potential U(a) produces a strong damping of the
wave functions p, (cr) as cr~ —~, acting as an infinite
barrier. This means that in the eikonal approximation a
wave packet centered somewhere in this region will be
driven to the region U & 0 as p increases, necessarily
crossing the line of classical configurations U=O. The
infinite potential barrier at o- —~ strongly suppresses
the possibility of transition of the system to configu-
rations with X ~ 0. Therefore BH's are topologically
stable under quantum Auctuations that keep the
geometry within the class (1).

For U & 0 the roles of space and time are interchanged
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FIG. 2. (a) Absorption and (b) emission of gravitons by a

BH.

FIG. 1. The (o.,p) minisuperspace. The line U=O contains
all the classical BH states of decreasing masses as cr ~. The
dotted curves are typical classical trajectories associated to Eq.
(8). All these trajectories end up in the hatched region.

between p and o., and a similar analysis indicates that as
4p+o. ~ the potential becomes infinitely repulsive.
Thus the future of any wave packet lies in the region
o +~ and p —~, with 4p+o. &0, in the eikonal
approximation.

In view of this we can assert that a classical BH is un-

stable, in the sense that any wave packet centered on the
line of classical configurations, U=O, will be inevitably
driven away by quantum eAects. Perturbatively these
quantum states should appear as a BH plus gravitons.
Nevertheless, the perturbative regime cannot be main-
tained indefinitely, as the tendency is to evolve into a
configuration dominated by quantum efI'ects. On the
other hand, any state prepared in the region U& 0 will
evolve towards the line U=O.

In a neighborhood of U=O, quantum processes can be
analyzed in a perturbative scheme. For example, a tran-
sition from a state below the line U=O to a point on the
line can be interpreted as the absorption of gravitons by
a BH, increasing its mass. Also, a transition from a state
on the line U=O to a point in a neighborhood above the
line can be interpreted as the emission of gravitons by a
BH, decreasing its mass. These processes are schemati-
cally described in Fig. 2. One can calculate the relative
probability of these processes in a semiclassical approxi-
mation by evaluating the action along a path going
from U&0 to U&0. Taking the classical path tangent
to the straight line 7p+4o =0 [orthogonal to U=O in
the metric (1,-1)], we estimate the relative probability to
be

P(Mp M2+g) —exp [—a (M2 —M ~ )],P M)+g Mp

where a is a positive constant of the order of 1. The
masses MI and M2 are calculated using the formula
M; =Mexp( —cr;/2) [cf. Eq. (10)] which is not strictly
valid off the line, but is a good approximation for
configurations close to the classical ones. From (11) we

see that the probability for emission is greater than the
probability for absorption of gravitons by BH's. This re-
sult goes in the same direction as Hawking's conclusion '

about BH radiance, in the sense that the probability of
emission increases as the BH loses mass. The above esti-
mate does not furnish information on the distribution
function of the energy of gravitons; this issue will be dis-
cussed in a forthcoming paper.

At this point we would like to call the attention to the
nature of the line U=O. Let us consider a path reaching
that line from below, where p plays the role of time. If
the path goes in the direction of increasing p, it can be
viewed as the absorption of a graviton by the BH.
Analogously, a path in the direction of decreasing p cor-
responds to the emission of a negative-energy graviton,
the BH reaching a final state on the classical line U=O
with a smaller mass. By the time reversal, the latter pro-
cess can be reinterpreted as the absorption of a graviton
by a BH in the direction of increasing p. By the same
token all processes corresponding to paths starting from
the classical line into the region U & 0 can be interpreted
as emission of gravitons by BH's. In this region o. plays
the role of time, and for increasing a the final state of
the BH has a smaller mass. It is worth emphasizing that
the line of classical states, U=O, acts as a divide between
emission and absorption processes. Furthermore,
"space" and "time" have their roles interchanged as the
line is crossed. In this sense, for quantum processes,
U=O behaves similarly to the Schwarzschild horizon.

Finally, some comments should be made on the state
that this system will approach as it evolves. In view of
the unstable nature of BH's in the present scheme, a
classical BH will inevitably approach a configuration
with a large number of gravitons produced at the ex-
pense of its mass. Moreover, since any localized wave
packet will eventually spread out under the influence of
the potential, the final state will necessarily be a superpo-
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sition of BH states of very small masses plus gravitons.
The eft'ective coupling for the vertex of Fig. 2 is

~
U

~
and

it approaches zero as the system evolves. Thus the decay
processes will fade out, producing a configuration of
noninteracting BH's and gravitons. From the semiclassi-
cal approximation (11), the absorption and emission
probabilities are expected to approach zero at the same
rate, as M qH 0. Also, as U 0, it becomes impossi-
ble to distinguish between a state of a BH of very small
mass and a pure graviton state. To sum up, the outcome
of the process will be a state of noninteracting, indistin-
guishable gravitons and mini-BH's.
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