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For a dilute gas of fermions interacting via an arbitrary pair potential in d=2 dimensions, we show
that the many-body ground state is unstable to s-wave pairing if and only if a two-body bound state ex-
ists. %'e further obtain, within a variational pairing Ansatz, a smooth crossover from a Cooper-paired
state (gokF»1) to a Bose condensed state of tightly bound pairs (gokF«1). We briefly discuss non-s-
wave superconductors. Insofar as this model is applicable to the high-T, materials, they are in the in-
teresting regime with the coherence length (0 comparable to the interparticle spacing kr
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There has been a resurgence' of interest in supercon-
ductivity with the discovery of the high-transition-
temperature (T,) copper-oxide superconductors. Quite
apart from the highly controversial issue of the pairing
mechanism, the high-T, materials have several charac-
teristics which are strikingly different from the tradition-
al superconductors. In this Letter we shall focus on two
questions motivated by the high-T, superconductors: (1)
the conditions for a superconducting instability in d=2
dimensions, and (2) the nature of the superconducting
ground state when the coherence length is of the order of
the interparticle spacing.

We analyze these questions within a simple continuum
model of a gas of fermions at T=O interacting via a
given two-body potential. We find that the existence of a
s-wave bound state in the two-body problem is a neces-
sary and sufficient condition for a many-body (s-wave)
instability for a d=2 dilute gas (defined below). This is
in marked contrast with the d=3 result. We also show
that the corresponding necessary condition is not true for
pairing in higher angular momentum channels. We
study next the many-body ground state within a varia-
tional Ansatz and find a smooth crossover from a state
with large, overlapping Cooper pairs (for a weakly at-
tractive pair potential) to a Bose condensate of compos-
ite bosons formed out of tightly bound pairs of fermions.
This crossover has been studied in three dimensions by

Leggett, and by Nozieres and Schmitt-Rink. (See also
the early work by Eagles. ) The distinguishing feature
of the d=2 analysis presented here is that the s-wave
mean-field equations can 'be solved exactly over the
whole parameter range, from Cooper pairing to Bose
condensation, to obtain a very simple and transparent
result. Some interesting features of the p-wave calcula-
tions are noted.

Consider a Fermi gas with an arbitrary static two-
body potential V(r), perhaps with a strongly repulsive
core at short distances and a longer range attraction with
a finite range of action R. Since we are interested in get-
ting results which are independent of the detailed shape
of the potential, we restrict our attention to a dilute gas,
where the average interparticle spacing (or inverse Fermi
momentum kF ) is much larger than the range R, so
that kFR «1, and the two-body interaction is completely
characterized by the low-energy T matrix.

In order to investigate a possible instability of the
noninteracting ground state (filled Fermi sea) we look at
the two-particle propagator L = (k'+p, —k'

~
I.

~
k+p,—k). Within the ladder approximation (see Fig. 1), it is

given by K=V+V&I., where we suppress the momen-
tum labels and summation, with the kernel

[JY($)]~k'=Sgn(ek eF)[$2(ek EF)) 6g k'.

Now, unlike the usual Bardeen-Cooper-Schrieffer (BCS)
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FIG. 1. The two-particle propagator L used in the instability analysis. All labels are four vectors; k =(k, ko), etc. In our analysis
we have taken the pair momentum p =0 and used the notation po=co.

Further, it can be shown that for d=2 the low-energy
phase shift is of the form

7rcot6p(2E) =ln(2E/E, )+6(E/eg),
where cp = 6 /2mR, and E„ is a parameter with the di-
mensions of energy (whose physical significance will be-
come clear below). Note the low-energy logarithmic
divergence in the T matrix, which is related to the
discontinuity in the d =2 density of states at E =0.

Using the T matrix of (1) and (2) we solve for the
two-particle propagator L, and look for a pole of L in the
upper half of the complex co plane —the usual signature
of an instability. This is given by the solution co=ie of
the form

1

rp(2E)
de[%'(ia) —Qo(2E) ],

2zh " (3)

where the integral is manifestly finite in the limit
~, and the dependence on the energy variable E

cancels out. Since we are interested in the onset of the
instability as the attractive part of V(r) is increased, we
are looking for solutions with a/eF «1, i.e., poles which
have just split oA from the real axis on to the complex
plane. We find such a solution a=(2eFE, )'i provided
that E, ((t F ((6'R, where the last inequality follows from
the diluteness condition kFR«1. Now, from (1) and
(2), it is clear that when E, «e~, there is a pole in the T
matrix corresponding to a bound state in the two-body
problem with binding energy E,. Thus we find that for a
d =2 dilute Fermi gas the existence of a two-body bound
state is a necessary condition for a many-body pairing
instability. (The more obvious su%ciency condition

assumption, the Fourier transform Vkk may not even be
defined because of the hard core in V(r) W.e will thus
rewrite our equations in terms of the well-defined T ma-
trix T=V+ VS'OT. Here 5'0 is the free Green's function
for the two-body problem

[Qp(2E)]kk = [2(E—ei, +ltd)] Bk k',

where E is the energy variable and g 0+. Formally
eliminating Vkk between the equations for L and T, we
obtain L =T+T(R —Qo)L.

In d =2 dimensions, the low-energy T matrix,
Tkk(2E) =ra(2E), expressed in terms of the s-wave
scattering phase shift, is given by

ro(2E) =(46 /m) [ —cotta(2E)+i]

emerges from the variational calculation below. )
A few remarks are in order. First, this result is obvi-

ous for a potential which is attractive everywhere in

d =2, since then a two-body bound state exists for an ar-
bitrarily weak attraction. However, for a potential with
strong repulsion at short distances [or, more generally,
when fd r V(r) does not converge], a two-body bound
state will exist, in d=2, only if the attraction crosses a
certain threshold, and our result is nontrivial. Second,
our result is in striking contrast to the three-dimensional
case. In d=3, the low-energy T matrix is characterized
by the s-wave scattering length a„and we obtain a pole
at

ru =ia =ieFge exp( —~/kF I a, I ),
provided that a, (0 and the system is dilute enough that
(kF I a, I ) ' ee. Thus for d = 3 the onset of the
many-body instability requires only that a, & 0, and not
the existence of a two-body bound state (the threshold
for which corresponds to a, —ea).

A simple way to restate our d =2 result is that an at-
tractive phase shift at finite energies Bo(t.F) & 0 (Cooper
instability) implies Bo(0) & 0 (a two-body bound state).
However, it can be shown' that, even for d=2, this
necessary connection does not hold" for higher angular
momentum (la0) channels; attraction at the Fermi level

6t(eF) & 0 does not necessarily imply Bt(0) & 0.
We now turn to the question of what efI'ect, if any, the

existence of a two-body bound state has on the pairing in

the many-body ground state in two dimensions. To
proceed, we make an Ansatz, following BCS, for the
many-body ground-state wave function:

+(1, . . . , N) =A[&(1,2)tI(3,4). . . P(N 1,N)], —

where A is an antisymmetrization operator. The varia-
tional freedom is in the choice of the pair wave function

The subsequent analysis proceeds along the standard
BCS route, except that the chemical potential for the
fermions is not, in general, fixed at the Fermi energy,
and must be determined self-consistently along with the

gap function.
The usual gap equation is Aq = —gk Vt,qhq/2Eq, with

Ek=[(ek —p) + I&kI ]' . As before, we would hke to
eliminate the possibly ill-defined Vkk in favor of the T
matrix for the two-body problem. To this end we use a
renormalization procedure' in which we introduce a
momentum cutoA' A& 6(R '), and integrate out the
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high momentum (k & A) contributions to the gap equa-
tion, to obtain an eAective interaction I in place of V.
We thus obtain

a, = —g rkk, and I =T —TgpP I,
2Ek

' (4)

where the projection operator P =p«A~k)(k~.
nally we wish to obtain finite results in the limit A

We shall first focus on s-wave pairing where the two
fermions in a pair are in a spin singlet and the gap func-
tion hk has no angular dependence. We then find that
the kernel of the renormalized gap equation (4) is given
by

rt, t,
= rp(2E) 1+ rp(2E)

~~ dp p
P 2tt 2(E —ep+irt)

(5)

provided kR«1 and k'R«1. It follows that the gap
function is constant, i.e., h,k=6, in the low-energy limit
kR «1, and is determined by

4~6'
dep Qp(2E) —Ek

mrp 2E
(6)

where the cutoff e& =6 A /2m.
The second equation which will be used to determine 5

and p self-consistently is the number equation

(7)de/ 1
—(ek p)/Et, =2EF—,

where we have used the d=2 relationship between the
Fermi energy and the number density eF =tth, n/m.
Solving (6) and (7) we obtain the result

6 = (2eFE, ) 'I, and p = eF E,/2, — (8)

where we recall that E, is the binding energy in the
two-body problem.

These remarkably simple results have a direct physical
significance. Just beyond the threshold for instability
E, «eF, and we find that we recover the BCS result. '

The chemical potential p=t..F, the Fermi energy, and
6/EF —(gpkF)

' « 1, so that the pair size gp is much
larger than the interparticle spacing kF

In the opposite limit of very strong attraction (or, of
very low density), we have a deep two-particle bound
state E, ))eF, and we find Bose condensation of essen-
tially noninteracting composite bosons, each made up of
a tightly bound pair of fermions. The chemical potential
for the fermions p = E,/2, which is one half—of the en-

ergy to break a pair, and the pair size is much smaller
than the interparticle spacing (gpkF ) ' » 1.

In between these two limits, and in particular when

gpkF 1, the pairing Ansatz has variational significance.
The usual calculation of the condensation energy gives
the result AE = ——,

' nE„ for arbitrary E,/eF. It is in-

teresting to note that this is just the energy of N/2 non-

interacting pairs each with a binding energy E,. Our re-
sults above suggest that there is a smooth crossover from
the BCS limit to Bose condensation, since there is no
singularity in (8) as a function of the parameter E,/eF
that interpolates between these two limits. If one looks
at the excitation spectrum, however, there is a point,
p =0, or equivalently E,/eF =2, at which a weak singu-
larity exists. This may be seen from the gap to single-
particle excitations Eg p

—minEk which is h, for p & 0
and (p +d ) 'I for p (0. The point p =0 could be ar-
gued to mark the transition between the BCS-type re-
gime (p & 0) and the Bose condensed regime (p (0).

We have also analyzed this crossover for the case of
d=2 p-wave pairing. The calculations' in this case are
considerably complicated by the appearance of ultravio-
let divergences in the gap and chemical potential equa-
tions, which we regulate by using corresponding results
from the two-body problem. The main results are the
following. In the two extreme limits the solution repro-
duces the BCS result (without the existence of a two-
body bound state) and Bose condensation of tightly
bound pairs. In between these two limits the ground-
state solution is continuous, but has a weak singularity at
p =0. Interestingly, the gap to single-particle excitations
does not necessarily have the same symmetry as the pair-
ing amplitude 6,. For h, -cosO, while Eg p has the ex-
pected cosO dependence in the BCS limit, it changes to
the isotropic Es,~=

~ p ~
for all p & 0. The details of

these results will be published separately. '

Rough estimates ' of the parameter kF gp for the
high-T, materials lead to values of about 5-10 for
YBa2Cu307, and about 10-20 for La~ q5Sro ~5Cu04.
This suggests that the copper-oxide superconductors are
neither in the Cooper-pairing limit (kF(p»1) nor in the
Bose limit (kF gp « I ), but are in the interesting inter-
mediate regime.

Finally, the pairing Ansatz has obvious limitations in
the "intermediate coupling" regime where (pkF —l.
While the results above give a qualitatively reasonable
description in this regime, a definitive analysis would in-
volve going beyond the mean-field level. A finite temper-
ature analysis of the intermediate coupling regime
remains an open problem. If the transition temperature
T, & E„which is possible even away from the extreme
Bose limit, there will be a regime between these two tem-
peratures where some bound pairs exist above T„ lead-
ing to anomalous "normal" state properties.
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