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For a dilute gas of fermions interacting via an arbitrary pair potential in d =2 dimensions, we show
that the many-body ground state is unstable to s-wave pairing if and only if a two-body bound state ex-
ists. We further obtain, within a variational pairing Ansatz, a smooth crossover from a Cooper-paired
state (Eokr>>1) to a Bose condensed state of tightly bound pairs (£okp<<1). We briefly discuss non-s-
wave superconductors. Insofar as this model is applicable to the high-7. materials, they are in the in-
teresting regime with the coherence length & comparable to the interparticle spacing ks '.

PACS numbers: 05.30.Fk, 74.65.+n

There has been a resurgence' of interest in supercon-
ductivity with the discovery of the high-transition-
temperature (T.) copper-oxide superconductors. Quite
apart from the highly controversial issue of the pairing
mechanism, the high-7, materials have several charac-
teristics which are strikingly different from the tradition-
al superconductors. In this Letter we shall focus on two
questions motivated by the high-T, superconductors: (1)
the conditions for a superconducting instability in d =2
dimensions, and (2) the nature of the superconducting
ground state when the coherence length is of the order of
the interparticle spacing.

We analyze these questions within a simple continuum
model of a gas of fermions at 7=0 interacting via a
given two-body potential. We find that the existence of a
s-wave bound state in the two-body problem is a neces-
sary and sufficient condition for a many-body (s-wave)
instability for a d =2 dilute gas (defined below). This is
in marked contrast with the d =3 result. We also show
that the corresponding necessary condition is not true for
pairing in higher angular momentum channels. We
study next the many-body ground state within a varia-
tional Ansatz and find a smooth crossover from a state
with large, overlapping Cooper pairs (for a weakly at-
tractive pair potential) to a Bose condensate of compos-
ite bosons formed out of tightly bound pairs of fermions.
This crossover has been studied in three dimensions by

Leggett,” and by Nozieres and Schmitt-Rink.> (See also
the early work by Eagles.*) The distinguishing feature
of the d=2 analysis presented here is that the s-wave
mean-field equations can be solved exactly over the
whole parameter range, from Cooper pairing to Bose
condensation,> to obtain a very simple and transparent
result. Some interesting features of the p-wave calcula-
tions are noted.

Consider a Fermi gas with an arbitrary static two-
body potential V' (r), perhaps with a strongly repulsive
core at short distances and a longer range attraction with
a finite range of action R. Since we are interested in get-
ting results which are independent of the detailed shape
of the potential, we restrict our attention to a dilute gas,
where the average interparticle spacing (or inverse Fermi
momentum kg ' ) is much larger than the range R, so
that kR <1, and the two-body interaction is completely
characterized by the low-energy T matrix.

In order to investigate a possible instability® of the
noninteracting ground state (filled Fermi sea) we look at
the two-particle propagator L={k'+p,—k'|L|k+p,
— k). Within the ladder approximation (see Fig. 1), it is
given by L=V +VHL, where we suppress the momen-
tum labels and summation, with the kernel

[# (o)l =sgn(ex — er)w —2(e — er)l ™ l5k,k' .
Now, unlike the usual Bardeen-Cooper-Schrieffer (BCS)
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FIG. 1. The two-particle propagator L used in the instability analysis. All labels are four vectors; k =(k,ko), etc. In our analysis
we have taken the pair momentum p =0 and used the notation po=w.

assumption, the Fourier transform V' may not even be
defined because of the hard core in V(r). We will thus
rewrite our equations in terms of the well-defined 7 ma-
trix T=V+V&GyT. Here G is the free Green’s function
for the two-body problem

[90(2E)]kk’=[2(E— €k +iT])] _‘Sk,k' s

where E is the energy variable’ and 7— 0F. Formally
eliminating V' between the equations for L and 7, we
obtain L=T+T(H — Gy)L.

In d=2 dimensions, the low-energy 7 matrix,
Txxw(2E) =10(2E), expressed in terms of the s-wave
scattering phase shift, is given by®

10Q2E) =A% /m)[—cotsoRE) +il ~ . )

Further, it can be shown that for d=2 the low-energy
phase shift is of the form

ncotdo(RE) =InQRE/E,))+O(E/€R) , 2)

where egx =h2/2mR?, and E, is a parameter with the di-
mensions of energy (whose physical significance will be-
come clear below). Note the low-energy logarithmic
divergence in the T matrix, which is related to the
discontinuity in the d =2 density of states at £ =0.

Using the T matrix of (1) and (2) we solve for the
two-particle propagator L, and look for a pole of L in the
upper half of the complex @ plane— the usual signature
of an instability. This is given by the solution w =ia of
the form

1 _ m
10(2E)  2zh?

where the integral is manifestly finite in the limit
ex— <o, and the dependence on the energy variable F
cancels out. Since we are interested in the onset of the
instability as the attractive part of V() is increased, we
are looking for solutions with a/er <1, i.e., poles which
have just split off from the real axis on to the complex
plane. We find such a solution a=2¢erE,) 172 provided
that F, < ér K €gr, where the last inequality follows from
the diluteness condition krR < 1. Now, from (1) and
(2), it is clear that when E, < €g, there is a pole in the T
matrix corresponding to a bound state in the two-body
problem with binding energy E,. Thus we find that for a
d =2 dilute Fermi gas the existence of a two-body bound
state is a necessary condition for a many-body pairing
instability. (The more obvious sufficiency condition

fo N el H# Gia) — 9oE)], 3)
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emerges from the variational calculation below.)

A few remarks are in order. First, this result is obvi-
ous for a potential which is attractive everywhere in
d =2, since then a two-body bound state exists for an ar-
bitrarily weak attraction. However, for a potential with
strong repulsion at short distances [or, more generally,
when [d?rV(r) does not convergel, a two-body bound
state will exist, in d=2, only if the attraction crosses a
certain threshold, and our result is nontrivial. Second,
our result is in striking contrast to the three-dimensional
case. In d =3, the low-energy T matrix is characterized”’
by the s-wave scattering length a;, and we obtain a pole
at

o=ia=ier8e “*exp(—n/kr|asl|),

provided that a; <0 and the system is dilute enough that
(kplas|) ~'— oo. Thus for d=3 the onset of the
many-body instability requires only that a; <0, and not
the existence of a two-body bound state (the threshold
for which corresponds to a;— — ).

A simple way to restate our d =2 result is that an at-
tractive phase shift at finite energies 5o(er) > 0 (Cooper
instability) implies 80(0) >0 (a two-body bound state).
However, it can be shown'® that, even for d=2, this
necessary connection does not hold!' for higher angular
momentum (/0) channels; attraction at the Fermi level
8;(er) > 0 does not necessarily imply &,(0) > 0.

We now turn to the question of what effect, if any, the
existence of a two-body bound state has on the pairing in
the many-body ground state in two dimensions. To
proceed, we make an Ansatz, following BCS, for the
many-body ground-state wave function:

v(l,...,N)=Alp(1,2)9(3,4)...o(N—1,N)],

where A is an antisymmetrization operator. The varia-
tional freedom is in the choice of the pair wave function
¢. The subsequent analysis proceeds along the standard
BCS route,® except that the chemical potential for the
fermions is not, in general, fixed at the Fermi energy,
and must be determined self-consistently along with the
gap function.

The usual gap equation is Ay = — Xy VkwAx/2Ek, with
Ex=[(ex —u) 2+ | Ac| 212 As before, we would like to
eliminate the possibly ill-defined Vi in favor of the T
matrix for the two-body problem. To this end we use a
renormalization procedure'? in which we introduce a
momentum cutoff A> @(R '), and integrate out the



VOLUME 62, NUMBER 9

PHYSICAL REVIEW LETTERS

27 FEBRUARY 1989

high momentum (k > A) contributions to the gap equa-
tion, to obtain an effective interaction I' in place of V.
We thus obtain

Ak=—ZFkk' Ak , and F=T—T90P<F, 4)
K<A 2Eyx

where the projection operator P < =X, <,|kXk|. Fi-

nally we wish to obtain finite results in the limit A— oo,
We shall first focus on s-wave pairing where the two

fermions in a pair are in a spin singlet and the gap func-

tion Agx has no angular dependence. We then find that

the kernel of the renormalized gap equation (4) is given

by

vdp  p |7

=
e = 0(2E) 0 27 2(E—¢,+in)

1+ 7(2E)

(5)

provided kR<1 and k'R« 1. It follows that the gap
function is constant, i.e., Ay=A, in the low-energy limit
kR <1, and is determined by

4nh?

i CE) =L6Ad6k [90(2E) _Ek_l] ) 6)

where the cutoff e =4 2A%/2m.
The second equation which will be used to determine A
and u self-consistently is the number equation

S, de[1=te—w/E | =2er, @

where we have used the d =2 relationship between the
Fermi energy and the number density er=rh>n/m.
Solving (6) and (7) we obtain the result

A=QerE) "2 and u=er—E./2, )

where we recall that E, is the binding energy in the
two-body problem.

These remarkably simple results have a direct physical
significance. Just beyond the threshold for instability
E,< er, and we find that we recover the BCS result.'?
The chemical potential u=¢€r, the Fermi energy, and
Aler~(&kp) 1< 1, so that the pair size & is much
larger than the interparticle spacing kel

In the opposite limit of very strong attraction (or, of
very low density), we have a deep two-particle bound
state E,> er, and we find Bose condensation of essen-
tially noninteracting composite bosons, each made up of
a tightly bound pair of fermions. The chemical potential
for the fermions u= — E,/2, which is one half of the en-
ergy to break a pair, and the pair size is much smaller
than the interparticle spacing (&okr) ~!> 1.

In between these two limits, and in particular when
Eokr~1, the pairing Ansatz has variational significance.
The usual calculation of the condensation energy gives
the result AE = — ¥ nE,, for arbitrary E,/er. It is in-
teresting to note that this is just the energy of N/2 non-

interacting pairs each with a binding energy E,. Our re-
sults above suggest that there is a smooth crossover from
the BCS limit to Bose condensation, since there is no
singularity in (8) as a function of the parameter E,/er
that interpolates between these two limits. If one looks
at the excitation spectrum, however, there is a point,
1 =0, or equivalently E,/er =2, at which a weak singu-
larity exists. This may be seen from the gap to single-
particle excitations Eg;p=minEy which is A for u >0
and (u2+A2)"2 for u <0. The point u =0 could be ar-
gued to mark the transition between the BCS-type re-
gime (u > 0) and the Bose condensed regime (u <0).

We have also analyzed this crossover for the case of
d=2 p-wave pairing. The calculations'® in this case are
considerably complicated by the appearance of ultravio-
let divergences in the gap and chemical potential equa-
tions, which we regulate by using corresponding results
from the two-body problem. The main results are the
following. In the two extreme limits the solution repro-
duces the BCS result (without the existence of a two-
body bound state) and Bose condensation of tightly
bound pairs. In between these two limits the ground-
state solution is continuous, but has a weak singularity at
u=0. Interestingly, the gap to single-particle excitations
does not necessarily have the same symmetry as the pair-
ing amplitude A. For A~cosf, while Eg,, has the ex-
pected cos® dependence in the BCS limit, it changes to
the isotropic Egap=|u| for all 4 <0. The details of
these results will be published separately. '°

Rough estimates'* of the parameter kr& for the
high-T. materials lead to values of about 5-10 for
YBa;Cu3O7, and about 10-20 for La,;gsSrg15CuOg.
This suggests that the copper-oxide superconductors are
neither in the Cooper-pairing limit (kg&y>>1) nor in the
Bose limit (kp&y<1), but are in the interesting inter-
mediate regime.

Finally, the pairing Ansatz has obvious limitations in
the “intermediate coupling” regime where &okp~1.
While the results above give a qualitatively reasonable
description in this regime, a definitive analysis would in-
volve going beyond the mean-field level. A finite temper-
ature analysis of the intermediate coupling regime
remains an open problem. If the transition temperature
T. < E,, which is possible even away from the extreme
Bose limit, there will be a regime between these two tem-
peratures where some bound pairs exist above T, lead-
ing to anomalous “normal” state properties.
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