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Generation of Dark $olitons in Optical Fibers

In the recent interesting Letter, ' Krokel et al. have re-
ported measurements of 0.3-psec dark pulses propaga-
ting through a 10-m single-mode optical fiber. It is well
known that the counterbalancing between dispersion and
nonlinearity that gives rise to optical bright envelope sol-
itons requires a pulse propagating in the anomalous
dispersion regime. Conversely, in the normal dispersion
regime the same mechanism allows for the undistorted
propagation of a hole in a cw background, or a funda-
mental dark soliton. Indeed, in the normal dispersion re-
gion Krokel et al'. ' observed two well-defined dark soli-
tons which were created by a driving dark pulse.

In this Comment we aim to attract attention to the
problem of dark-soliton generation in optical fibers. The
problem is very important for an explanation of some re-
sults by Krokel et al. ,

' and also for the potential use of
dark solitons in optical communication systems. We
demonstrate that dark solitons may be created as pairs
by an arbitrary dark pulse without a threshold. This re-
sult qualitatively diAerentiates dark solitons from bright
ones (the latter may only be generated at some threshold
of an input power; see, e.g. , Ref. 2).

The propagation of short optical pulses in single-mode
optical fibers is described by the normalized nonlinear
Schrodinger equation

iu„+ tTu„+2
~
u

~
u =0.

In the case o. = —1, there are no bright solitons; instead
the pulses undergo enhanced broadening and chirping.
Other solutions of the nonlinear Schrodinger equation
(1) for a = —1 are dark solitons with the boundary con-
ditions

~
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~ uo =const, as t + ~. Let us consider
for these boundary conditions the generation of dark sol-
itons by a small-intensity hole created by a driving pulse
at the edge of a fiber (x =0) (similar to the experiment
of Ref. 1),
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According to the inverse scattering technique, to find
which type of initial function generates solitons, one has
to investigate the eigenvalue Zakharov-Shabat problem:
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there always exist two eigenvalues of the discrete spec-
trum
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corresponding to a pair of dark solitons with equal am-
plitudes uo~ B~ and opposite velocities + 2ko. It means
that for 8 & 0 the dark-pulse solitons may be created
without a threshold, i.e., by an infinitely small driving
pulse. This analytical result explains the experimental
conclusions of Krokel et al. who, in particular, did not
observe any threshold power for dark-soliton creation.

It is interesting to note that our results (3) and (4) for
the eigenproblem (2) have an analogy with the famous
Peierls problem in quantum mechanics: A one-dimen-
sional well always contains a discrete level.

The absence of a threshold for dark-soliton generation
leads to important conclusions. One can easily create
dark solitons in optical fibers by a small driving pulse,
but, on the other hand, small (random or systematic)
fluctuations acting on dark solitons will create additional
secondary dark pulses (with the probability p & 2 ).
The latter, probably, will make impossible the eA'ective

use of dark solitons in optical communication systems.
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corresponds to a dark soliton with amplitude w moving
with velocity 2k. The investigation of the eigenvalue
problem (2) for a small ui(t) leads to the following re-
sults. For an arbitrary function ui(t) (which falls oH'

fast enough at t ~ + ee),
~
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