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Interference of Directed Paths in Disordered Systems
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We consider sums over directed paths, interfering due to quenched random elements controlling either
the phase or the sign of each term. The former enter the determination of electronic transport in the lo-
calized regime, and the latter that of correlations in the high-temperature phase of the Ising spin-glass.
Numerical computations in two dimensions indicate anomalous Auctuations dominated by untypical
paths, with scaling behavior similar to that of random but positive impurities. This is argued to follow
from a bound state, due to a subtle attraction between pairs, in replica space.

PACS numbers: 71.55.Jv, 05.40.+j, 72.20.Dp, 75. 10.Nr

In many circumstances, an interesting physical quanti-
ty is obtained as a sum of contributions over diA'erent
"paths. " If terms in the sum have different signs (or
phases), complicated interference patterns can arise.
What happens when quenched impurities modify the
sign (phase) of each contribution? Here we examine
two such cases: One is the high-temperature series for
the two-spin correlation function in the Edwards-
Anderson' model of a spin-glass. Each term is a prod-
uct over bonds along diA'erent paths connecting the two
spins, and as the bonds are random in sign, each contri-
bution may be positive or negative. Our second example
concerns the quantum interference between tunneling
paths, resulting from multiple elastic scattering by im-
purities. We start with a simplified model introduced by
Nguen, Spivak, and Shklovskii (NSS), and generalize it
to include random tunneling events represented by ran-
dom phases. What are the statistical properties of such
sums, and where do the dominant contributions come
from?

A similar problem appears for directed polymers in

random media. " The terms in the partition function Z
are Boltzmann weights of polymer configurations, and
impurities produce a randomness in magnitude, rather
than phase, of each term. For strong randomness, lnZ
has a well-defined distribution, its mean increasing
linearly with the polymer length t, and fluctuations scal-
ing as t". Transverse fluctuations of typical paths scale
as t ' with v & 2 . In d =2, it can be shown by the repli-
ca method, or by mapping to a Burgers' equation, that
07 3 and v = —,

' . With impurities producing random-
ness in sign (phase), rather than in amplitude, we may
expect wilder fluctuations in Z(t). Here we present nu-

merical results in two dimensions, and analytic argu-
ments, suggesting that the asymptotic behavior with ran-
dom signs or phases is in fact similar to that of random
amplitudes. Numerical results again show that lnZ(t)
has a mean proportional to t, and a standard deviation

that grows as t" with co =0.33 ~0.05 (a replica argu-
ment suggests to = —,

' exactly). The numerical results for
transverse fluctuations are less clear-cut, but the esti-
mate v=0.68+ 0.05 is in agreement (though somewhat
larger) with the theoretical value of —,

' . We suggest that
in higher dimensions random phases and random magni-
tudes may again lead to similar behaviors for directed
paths.

Consider the Ising spin-glass (Hamiltonian H
=p&;J&J;~o;aI) with nearest neighbor -bonds J;~ equal to
+J or —J with the same probability. ' The two-spin
correlation function [tTotT„],„, in a h. igh-temperature ex-
pansion, is a sum over paths connecting n-0 and cr„, each
contributing a product of tanh(pJ~I) factors along its
length ([ ],. „denotes thermal averaging). In the limit
tanh(PJ) 0, only the shortest (directed) paths con-
necting the end points need to be considered. Figure 1

indicates three such paths in the series for spins separat-
ed diagonally on a square lattice. Since all these direct-
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FIG. 1. Directed paths of length t =2t' connecting two diag-
onally separated points on a square lattice. There are random
elements on bonds or sites.
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I. IG. 2. The standard deviation of the logarithm of the sum
over directed paths vs the path length t. The dashed line has
slope cu = —,

' . (Here, impurity averaging is denoted by the over-
bar. )

ed paths are of the same length,

[oooo, , ].,v
= tanh(p J ) "'Z(2r '),

where Z(2r') is the sum over the %=(2t')!/(t'!) possi-
ble paths, each contributing + 1 or —1 depending on the
product of signs of random bonds crossed. Statistical
properties of Z(t) were explored numerically by consid-
ering 2000 realizations for values of t up to 2000 (t =2t'
is the path length). Although the number of paths grows
exponentially with t, a transfer-matrix algorithm allows
exact calculation of Z(t ) in polynomial time. For
several choices of t we checked that positive and negative
values of Z occur with equal probability. Moreover, his-
tograms of ln

~
Z(t)

~
are well fitted by Gaussian forms.

The mean of the distribution increases linearly with t
[(ln

~
Z

~
) = (0.32+ 0.01)r ], and the standard deviation

grows as t" (( ) denotes impurity averaging). Figure
2 is a log-log plot of ((ln

~
Z

~
) —(ln

~
Z

~
) )'~ vs t and

can be fitted by a straight line with slope
co =0.33+ 0.05.

Analytic information about the probability distribu-
tion can be extracted by examining the moments (Z");
this is related to the characteristic function for
ln

~
Z(r )

~
. As each term in Z describes a path traversing

the random medium, the terms in Z" correspond to the
product of contributions from n independent paths. (For
example, the three paths in Fig. 1 can be regarded as a
term in Z . ) Upon averaging, if m paths cross a partic-
ular bond (0 ~ m ~ n), we obtain a factor of [1
+( —1) ]/2, which is 0 or 1 depending on the parity of
m. For odd n there must be bonds with m odd, and
hence (Z '+') =0, which of course implies and follows
from the symmetry P(Z) =P( —Z). For even moments
(Z "), the only configurations that survive averaging are
those in which the 2n replicated paths are arranged such
that each bond is crossed an even number of times.

These configurations correspond to drawing n indepen-
dent paths between the end points and assigning two re-
plica indices to each (Fig. 1 can now represent a term in

(Z )). However, there is a subtlety in calculating (Z ")
from the n "double" paths: After two such paths cross,
the outgoing paths can either carry the same replica pair
labels as the ingoing ones, or they can exchange one la-
bel [e.g. (12),(34) (12),(34) or (13),(24)]. Therefore
there is a multiplicity of two per crossing of paths, which
can be regarded as an attraction induced by an exchange
of a replica partner.

Calculating (Z ") is now reduced to finding the sum
over'n paths attracted to each other by a factor of 2 per
crossing. This is most easily evaluated in the continuum
limit by regarding the paths as world lines of n attracting
particles in one dimension. The ground state that dom-
inates the long-t statistics is an n-body bound state with

energy e„=—an(n —1), where a is a positive con-
stant. Hence, for large t, (Z(t) ")-2"'exp[an(n —1)
&&t]. This is the characteristic function for ln(Z ), and
the absence of an n term in the exponent indicates no
second cumulant at order of t. The n term refIects a
third cumulant scaling as t, and therefore the scale of
fiuctuations in ln

~
Z

~
is set by t '; i.e., o& = —,

' in agree-
ment with numerical simulations. Note that the above
arguments are almost identical to those presented for the
random-magnitude problem. The conceptual diff'erence
is in the origin of the attraction between paths which in

this case is purely a statistical exchange eA'ect. Note
that we have ignored the multiplicities involved when
three or more paths cross. Indeed the resulting multipli-
city for multiple crossings cannot be written as a sum of
attractive pair potentials. This, however, does not modi-

fy the above argument as in the continuum limit the
probability of three particles at the same site is zero.
Thus the two-particle attraction is sufhcient to obtain the
properties of the bound state.

In calculating the Mott variable-range-hopping con-
ductivity, one needs the probability for an electron to
hop between sites far apart. In many cases, this is not a
unique tunneling event, but a multiple scattering from
impurities (donors) between the initial and final states.
NSS introduced an Anderson tight-binding model
(H=P;e;a; a;+ V+~;~&a; a~), on a square lattice as in

Fig. 1, to study the outcome of such multiple coherent
tunneling events. The on-site energies t..; are independent
random variables taking values +8' with probability
1 —p, and —8' with probability p. Conductivity be-
tween the initial and final sites [(0,0) and (t', r')] is pro-
portional to

~
I ~, where I is the matrix element connect-

ing these sites. As each step along a path joining the end
points results in a factor of V/W, in the limit V«W, the
main contribution comes from the % directed paths that
exclude backward steps. ' Hence

N t —
1

J(t) with J(t) = g + q;,
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where for each path a, the product is over factors ri;
=W/e; = ~1 along its length. Although the random
signs now originate at the sites, rather than at the bonds,
in the asymptotic limit, this difference between the sums
Z(t) and J(t) is not important.

The NSS model has received considerable attention, '

but most analytic approaches have ignored the correla-
tion between paths. ' As demonstrated by Shapir and
Wang, such correlations are essential to the proper un-
derstanding of interference effects. Indeed for p = —,',
the sums J(t) and Z(t) are asymptotically identical, and
the correlations between paths lead to the logarithmic
distributions discussed earlier. Extending the replica
analysis to &

J"(t)) with general p, upon averaging we ob-
tain a factor of 1 —2p for an odd number of paths
through a particular site. Although for p& & double oc-
cupation is no longer absolutely necessary, the reduced
factor of 1 —2p for p&0 encourages paths to occur in

pairs. The exchange attraction between pairs again
leads to an n-body bound state. Thus we expect
&J"(t))=exp[a~ (p)nt+P(p)n t], with di[ferent first
cumulants e+ and e —for even and odd moments. NSS
suggest a transition in the behavior of I'(J) at

p =p, —0.05: For p & p, J is mostly positive, while for

p & p„positive and negative values occur with equal
probability. The above analysis indicates that if such a
transition is present, it is not reflected in the behavior of
moments of J.

As the electron wave function is a complex number,
and in the most general hopping problem random tunnel-
ing elements are also present, we are led to consider ran-
dom phases. In the continuum limit, interference effects
result in a stationary wave function y(x, t ) satisfying

By/Bt = vV y+iB(x, t)y.

=8 1 forces m =m'. Thus again the original 2n paths
coalesce to form paths for n pairs. The same factor-of-2
exchange attraction describes the interaction between
double paths and leads to a bound state in d=2. We
thus expect the probability distribution for (W"(O, t)) to
have the same universal features as in the case of ran-
dom signs.

We checked this by numerical simulations on the
square lattice in Fig. 1, with phases 0 independently
chosen for each bond from a uniform distribution
—tr & 0 & tr. Fluctuations in ln W(O, t ) again grow as t
with co =0.30~0.05, consistent with co =

3 . Another in-
teresting quantity is the transverse fluctuations caused by
the scattering. For each realization of randomness, using
the weight W(x, t), we calculate the expectations [x]„
and [x ],, which measure such [luctuations. These re-
sults are then averaged over many realizations. The re-
sults for t ~4000, averaged over 200 realizations, are
plotted in Fig. 3. The transverse fiuctuations ([x],, ) and
([x ]„)appear to converge to the same limit, although
each is influenced by corrections to leading scaling.
Their difference, also plotted in Fig. 3, grows approxi-
mately as t (a subleading power law). By considering
both curves we have concluded that the leading asymp-
totic behavior is t ', with v=0.68 ~0.05. We interpret
these results as due to a distribution W(x, t) with a
width growing as t ', while the center fluctuates as t'.
Such fluctuations of the "center" can be visualized as
strechings of a coarse-grained path length by x /t. The
associated energy cost of streching is tolerated if
sufhcient free-energy fluctuations are available. As the
free-energy fluctuations increase like t", this implies the
exponent identity 2v —1=co. Using co= 3, we obtain
v 3 which is somewhat smaller than, though consistent

This is a "Schrodinger-type" equation in a random po-
tential 8(x, t), except that t and x are both spatial coor-
dinates (t is parallel to the hopping direction, and x is
perpendicular to it). The crucial di[ference is that the
"kinetic energy" term is real. This is because we are
dealing with decaying (tunneling) waves, rather than
propagating ones. It also provides a justification for ig-
noring backscattering paths which are essential to locali-
zation. Equation (1) with real noise has been studied
by renormalization-group methods. ' A similar pro-
cedure for imaginary randomness indicates that it is a
relevant operator, leading to renormalization-group flows
towards strong coupling, but without a stable fixed point.
A discrete version of Eq. (1) is obtained by assigning a
random factor of e' to each bond. Because of the arbi-
trariness in phase, all moments &y") of the wave function
vanish, and we should examine the norms W(x, t )
=

~ y(x, t)
~

. The moment (W") =((y*)"(y)") is ob-
tained by looking at 2n replicated paths (n for y and n

for y*). On each bond crossed by m paths from y, and
m' paths from y*, the averaging [(expliO(m —m')])
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FIG. 3. Transverse Auctuations measured by ([x ],„) and
([x]„)vs the path length t The dashed line .has slope 2v= —', .

The difference between the two curves appears to grow linearly
in t. The dashed-dotted line has slope —,

'
.
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with, the numerical data in Fig. 3.
In conclusion, we have carried our numerical (transfer

matrix) and analytical (replicas) studies of sums over
directed paths with random signs or phases in d =2. Our
results indicate that these sums have universal charac-
teristics similar to the case of random magnitudes —the
logarithm of the sum has a well-defined distribution with
fluctuations that grow as t . The dominant contribu-
tion to the sums comes from paths that disperse as t in

the transverse direction. The replica analysis can be ex-
tended to higher dimensions: The replicated paths are
always paired up (at p = —,

' ) and experience an exchange
attraction. In d 3 there is still a bound state, and fluc-
tuations should behave as directed polymers in a random
3D environment. For d & 3, although a bound state is
still possible, unlike the directed-polymer case the
strength of the attraction (and hence the bound state) is

not adjustable. We may speculate whether the unbind-

ing of replica pairs at some p & —, in d & 3 indicates the
sign transition anticipated by NSS. In earlier work on
the hopping problem, ' it was assumed that typical
paths are diAusive with a width scaling as t ' . As the
cigar-shaped area between two such paths scales as t
in a magnetic field B a typical phase change proportional
to Bt between paths was anticipated. We find that
dominant paths are superdiA'usive, implying a larger flux
(proportional to Bt ' ). Although the diA'erence is small,
since it eAects a quantity that is potentially observable,
its relevance to future experiments cannot be ruled out.
We are currently pursuing the question of fluctuations in

conductivity in the presence of a magnetic field.
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Note added. -In his Comment (this issue) Zhang ad-
dresses very similar questions. On the basis of numerical
results similar to ([x]„) in Fig. 3, he concludes that
v= 4, and provides a replica justification for this result
based on co= 2. We disagree with his replica analysis
and believe that the larger v may be due to subleading
corrections to scaling.
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