
VOLUME 62, NUMBER 8 PHYSICAL REVIEW LETTERS 20 FEBRUARY 1989

Molecular-Dynamics Simulations of Nonequilibrium Heat and
Momentum Transport in Very Dilute Gases

D. K. Bhattacharya and G. C. Lie
Department 48B/MS428, Data Systems DivisionIB, M Corporation,

Neighborhood Road, Kingston, Ne~ York 12401
(Received 19 December 1988)

Molecular-dynamics simulations were used to study the heat and momentum transport phenomena in

very dilute gases Aowing through a two-dimensional channel. Aside from pronounced slips in velocity
and temperature at the wall, Navier-Stokes equations seem to be valid up to the maximum Knudsen
number (Kn), 0.27, studied. It is further shown that the viscosity of a very dilute gas decreases mono-
tonically with the decreasing density. For Kn less than —0.05, the slip coefTicient, 1.16, calculated from
the simulation is in good agreement with theoretical results, ranging from 1.134 to 1.230. However, at
higher Kn, the slip coefficient is predicted to depend on the Knudsen number.

PACS numbers: 47.45.—n, 05.20.Dd, 47.60.+i, 51.10.+y

The kinetic theory of a dilute gas, based on the
Chapman-Enskog solution of the Boltzmann equation,
has been very successful in describing nonequilibrium
transport phenomena in a dilute gas. ' On the basis of
this theory one cannot only derive the field equations
describing the nonequilibrium heat and momentum
transport at the macroscopic level, but also obtain the
temperature dependence of the transport coefficients.
One of the important features of this theory is its
surprising and successful prediction that for a dilute gas,
various transport coefficients do not depend on the densi-

ty.
However, there exist a significant number of experi-

ments which show that when the pressure is reduced
significantly, the thermal conductivity and the shear
viscosity of a dilute gas are not longer density indepen-
dent, but monotonically decrease with the decreasing
density. The very first such experiment was done in

1875 by Knudt and Warburg. Similarly Smoluchow-
ski and Knudsen showed that when the gas is

sufficiently dilute, the velocity and temperature profiles
diA'er significantly from the predictions of continuum hy-
drodynamics inasmuch that there are pronounced veloci-

ty and temperature slips at the wall which increase with
increasing rarefaction. Since no macroscopic transport
theory has yet been developed which can explain such
phenomena as observed by Knudt and Warburg, Smolu-
chowski, and Knudsen, there appears a need to study this
at the molecular level itself.

In this paper we seek to achieve this by simulating
nonequilibrium heat and momentum transport using the
molecular-dynamic methods. We are particularly in-
terested in the density regime where the classical trans-
port theory based on the first-order Chapman-Enskog
theory may break down. The origin of the inherent limi-
tation of the Chapman-Enskog method can be traced
back to the fact that in this approach the distribution
function is expressed in the power series of the Knudsen

number, which is defined as Kn=7./L, where k is the
mean free path of the gas molecule and L is a charac-
teristic length of the system. The first-order term gives
rise to the Navier-Stokes and Fourier equations. Thus
the continuum description is valid only as long as the
Knudsen number is sufficiently small. Two interesting
situations arise when the Knudsen number is large and
the Chapman-Enskog solution is likely to break down.
The first is when the geometric dimension of the system
is very small. One such important area is that of heat
generation in integrated chips in modern supercomputers
where the appropriate cooling strategies require the heat
analysis in a system having microscopic dimensions.
Second, the Knudsen number could also be large when
the mean free path of the particle is large. The mean
free path being inversely proportional to density, the
determination of the low and heat transfer around a
body (such as a space shuttle or an aeroassisted orbital
transfer vehicle) moving in the upper atmosphere re-
quires an extension of continuum hydrodynamic con-
cepts.

In the present Letter, we report a novel simulation of
nonequilibrium heat and momentum transport in a two-
dimensional channel in a density regime characterized by
a Knudsen number ranging from 0.01 to 0.30. Using the
method of molecular dynamics, we study the dynamics
of 2500 gas particles (argon atoms), interacting via a
soft-sphere Lennard-Jones-type potential ' and en-
closed between two parallel stochastic thermal plates
placed at x =L/2 and L/2 and kept a—t 300 K. The
flow in the y direction is induced by subjecting the parti-
cles to an external gravitational field of g =5 x 10'
cm/sec, which produces a fiow corresponding to a Rey-
nolds number of the order of 20. We show that as the
density is decreased progressively, the flow and tempera-
ture profiles exhibit a sharp jump at the wall and the
shear viscosity decreases monotonically. Simulation re-
sults are also used to calculate the slip coefficient, ap-
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TABLE I. Parameters used in the simulation of the two-
dimensional channel fiows (total number of the particles in the
system is 2500).

Run No.
Length of box

(A)

469.7
1183.6
2024.0
3212.9
4799.5
5494. 1

6992. 1

10304. 1

Kn

0.012
0.031
0.053
0.085
0.127
0.145
0.185
0.272

1.7
10.9
31.9
80.3

179.3
235.0
380.6
826.6
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pearing in the Maxwell model of slip velocity at the wall,
and this is compared with the theoretical results obtained
by several authors. " ' The agreement with the theoret-
ical results is very good. The details of the molecular-
dynamics simulation followed closely those of Hannon,
Lie, and Clementi, ' except that the time step used
here was 2X10 ' sec. Other parameters used in the
present simulations are summarized in Table I. Statis-
tics were collected by dividing the LxL box into cells
with x:y =100:1 and averaging over 10000 steps.

In a two-dimensional system we define the Knudsen
number Kn, which characterizes the degree of rarefac-
tions by

Kn =X/L =(J2rrnrTL)

where n is the number density per unit area and o is the
Lennard-Jones parameter signifying the particle's diam-
eter. Another index of the rarefaction is the ratio X/o.
In Table I, we have given the values of Kn and X/a for
the parameters shown in our simulations. For Kn
=0.012, we find )./cr =1.71, and thus it would rellect the
properties of a dense Iluid, while the others (Kn varying
form 0.03 to 0.27) represent the dilute gas at various de-
grees of rarefaction.

The average velocity u calculated in the x direction is
zero, as expected. The velocity profiles in the y direction
are shown in Fig. 1 for five of the eight runs reported in
Table I. The velocities have been scaled with a reference
velocity v„=0.14 X 10 cm/sec which represents the ve-
locity at the center of the channel for Kn=0. 27. For a
dense fluid at Kn =0.012, the velocity at the wall is al-
most zero, which has also been observed in several other
simulations of the channel flow. However, as the densi-
ty decreases there is a pronounced slip at the wall. In
the scaled unit the slip velocity increases from 0.05 for
run 2 to 0.26 for run 8. Furthermore, as the density de-
creases, the temperature jump (the diA'erence between
the wall temperature and the average temperature of gas
particles next to the wall) increases rapidly. The velocity
and the temperature slips found in our simulation are
analogous to the ones observed by Smoluchowski and
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FIG. 1. Velocity profiles for various values of the Knudsen
number. From bottom to top: Kn =0.031, 0.053, 0.12, 0.185,
and 0.27. The solid lines are the fitted curves of Eq. (2) to the
simulation results.

Knudsen in their pioneering experiments, ' and are a
direct consequence of the nonequilibrium arising from
infrequent collisions among the gas particles at very low
densities.

If the variation in density and transport coefficients
across the channel can be neglected, then the Navier-
Stokes and the Fourier equations can be solved exactly
giving a quadratic velocity and a quartic temperature
profile across the channel. ' Thus if the simulations
obey the continuum mechanics, the velocity and the tem-
perature profiles should exhibit, respectively, a quadratic
and a quartic dependence on x*(:x/L). Our sim—ula-
tions, as shown in Fig. 1 for the velocity, show that this is
indeed the case: The standard deviation in the fitting for
the velocity profile with a parabolic form is less than 4%,
while the error in fitting the temperature profile with a
quartic form is around 10%. This may sound surprising
at first for very dilute gases, but as has been demonstrat-
ed in many diA'erent situations, ' ' the validity of the
Navier-Stokes equation seems to extend far beyond their
"theoretical" limits.

The shear viscosity can be estimated either from the
maximum velocity at the center of the channel or from
the curvature of the velocity profile. At Kn=0.031,
when the gas is dilute and the temperature at the center
of the channel is 480 K, the viscosity obtained through
the simulation, r) =18.3X10 ' g/sec, is in good agree-
ment with the theoretical result, 18.5&&10 ' g/sec, ob-
tained using the analysis of Gass for dilute gases. '

In Fig. 2, we display the variation of the shear viscosi-
ty with the density. Consistent with the prediction of
Knudt and Warburg, we find that the shear viscosity of
a slightly rarefied gas decreases with decreasing density.
This also indicates that the first-order Chapman-Enskog
solution of the Boltzmann equation showing viscosity in-
dependent of density is no longer true in the range of the
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FIG. 2. Variation of the shear viscosity with the Knudsen
number obtained from the simulations.

v =ak(dv/dx) (2)

Knudsen number considered here. Note that Fig. 2 also
contains a temperature dependence because as the Knud-
sen number increases, the temperature of the gas inside
the channel also increases. However, as the viscosity
usually increases with increasing temperature, the densi-
ty dependence would be even more pronounced if we
take the temperature into account. Since the T '

dependence of the viscosity may no longer hold for the
rarefied gases studied here, it apparently needs more de-
tailed investigation, which is currently underway in our
laboratory.

We now turn our attention to the calculation of the
slip coefficient. Maxwell, on the basis of his analysis of
the kinetics of a dilute gas near an idealized solid wall,
predicted that the slip velocity at the wall in the first-
order approximation is given by'

FIG. 3. Variation of the slip length with the Knudsen num-

ber obtained from the simulations. The straight line is ob-
tained by a least-squares fit of the first two simulation data and
the origin (which implies that we are assuming there would be
no slip as the Knudsen number goes to zero). The slope of the
line gives the slip coefticient discussed in the text.

slope clearly varies with the density. This has an impor-
tant implication. It appears that the Maxwell model
with an experimentally determined value of the slip
coefficient can be used to calculate the slip velocity at the
wall only if the Knudsen number is sufficiently small.
The apparent breakdown of the Maxwell model at a
large Knudsen number may be due to the importance of
the higher-order velocity derivatives or to the coupling
with the temperature gradient which has been neglected
in the derivation of Eq. (2).

Since the velocity and the temperature slips at the wall
could also depend, apart from the density, on the
absorbed-gas-film characteristic, it would be necessary to

where a is the slip coeQcient, which in turn depends on
the momentum accommodation coefficient of particles
representing how well the gas molecules stick at the wall.
Several authors have calculated the slip coefficient, mak-
ing various approximations in the Boltzmann equation
and presuming that the Knudsen number is in the slip-
flow regime (Kn=0.01-0.1)." ' We can rewrite Eq.
(2) as

l, =v„/(dv/dx*)„=aKn,

where l, is the dimensionless slip length. This equation
shows that the slip length should be proportional to
Knudsen number. In Fig. 3, we study the variation of
the slip length with the Knudsen number. For a small
Knudsen number (Kn ~0.05), the slip coefficient 1.16
(measured by the slope of the curve) is indeed constant
and is in good agreement with the various theoretical
predictions ranging from 1.134 to 1.230, as shown in
Table II. For larger Knudsen numbers (Kn) 0.05) the

TABLE II. Comparison of the slip coefficient obtained from
the present molecular-dynamics simulations with various
theoretical calculations based on the Boltzmann equation.

Authors
Slip

coe%cient Ref. No.

Welander '
Wang Chang and Uhlenbeck'
Willis'
Ziering'
Albertoni, Cercignani, and Cutusso'
Bhattacharya and Lie

1.230
1.134
1.142
1.16
1.146
1.16

11
12
13
14
15

This work

Based on approximate solutions of the Boltzmann equation for
M axwell molecules.

There are some doubts as to the accuracy of this work (see Refs. 16
and 18).

'Based on numerical calculations of an exact analytical expression of
the solution for an approximate model of the Boltzmann equation for
Maxwell molecules (Ref. 20).
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incorporate a more detailed analysis of the gas-surface
interaction. We are now in the process of refining the
simulation reported here. The improvement we envisage
consists in attributing molecular properties to the wall. '

In the new simulation, the system is divided into two dis-
tinct regions, one consisting of wall molecules and the
other consisting of gas molecules. The specification of
the various molecular interactions and the molecular dy-
namics of the composite system then allows us to study
how the chemical and the physical state of the bounding
surface inAuences the nonequilibrium Aow properties of a
very dilute gas.

The authors are indebted to Dr. E. Clementi, Dr. V.
Sonnad, and Dr. R. Panda for helpful discussion.
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