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Experimental Study of Energy-Level Statistics in a Regime of Regular Classical Motion
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We have studied energy-level statistics of the diamagnetic lithium Rydberg spectrum in a regime of
regular classical motion. The distribution of adjacent levels displays the Poisson-type behavior that has
been reported in theoretical studies of numerous systems. Long-range correlations in the spectrum can
be related simply to the number of underlying manifolds.

PACS numbers: 32.80.—t, 05.45.+b, 32.60.+i

Energy-level statistics are believed to be an important
signature of classical dynamics in quantum systems. ' In
particular, it is generally accepted that regular classical
dynamics for a nonseparable Hamiltonian is manifested

by Poisson statistics of energy-level positions. !n con-
trast, systems that display irregular or chaotic classical
motion are characterized by the statistics of random-
matrix eigenvalue ensembles. The classical dynamics of
the diamagnetic hydrogen atom is known to display both
regular and irregular behavior, and quantum calcula-
tions reveal that the spectral statistics display the corre-
sponding expected behavior. Thus, the diamagnetic
structure of hydrogen and similar Rydberg atoms pro-
vides an ideal testing ground for investigation of the
manifestations of nonlinear classical behavior in a quan-
tum system. We report here what to our knowledge is

the first experimental study of energy-level statistics in a
regime of classically regular motion. The distribution of
spacings between adjacent energy levels is in general
agreement with predictions. We have also studied corre-
lations in the spectrum. For short range, these correla-
tions are Poisson type. At long range, however, there is

a clear departure from Poisson behavior that can be re-
lated simply to the number of underlying manifolds.

The Hamiltonian for the hydrogen atom in a magnetic
field Bz can be written

E. Numerical studies of the trajectories governed by H
reveal orderly motion for E ( —0.54. In the regime
—0.54~ E ~ —0.127, both regular and irregular tra-

jectories are found, and for E & —0.127, the motion ap-
pears to be fully chaotic. These regions are displayed in

Fig. 1.
Studying, energy-level structure experimentally re-

quires surveying an energy range containing a su%cient
number of eigenstates to provide good statistics. The
range available for studying regular statistics is limited.
At zero field the energy levels form a Rydberg series
which characterizes purely periodic motion. At low
fields each term splits into a manifold of levels that ini-
tially evolve as parabolas. As the field increases these
manifolds overlap, as shown in Fig. 2. Poisson-type be-
havior requires the superposition of many manifolds.
Figure 2 shows that to have many manifolds mixed and
also to be in the classically regular regime, it is desirable
to work with high E and low B. However, the energy-
level density also increases with E. Consequently, finite
spectral resolution places an upper limit on the energy

H= ——+ L, +—(x +y ) .—p' 1 1- 1

2 p 2 8
(2)

Because H does not depend on 8, the full range of classi-
cal behavior is characterized by the parameters L, and

H= ——+ L,B+ 8(x +y —), —p 1 1 1

2 r 2 8

where the unit of magnetic field is

m e (4tteo) tt1 =hcR /hatt =2.35X10 T.
Relativistic eAects and interactions of the electron and
nuclear spins are neglected. The classical mechanics of
this system is conveniently expressed in terms of scaled
variables: r =8 r and p =8 ' p. It is readily shown

that H =8 H, where

—30
I

E

CA

CD

w 60

—90

irregular o rb its

~ "" 3 n's mixed

0.5 1.0 1.5 2.0
Field [teslaj

2.5 3.0

FIG. 1. Regions of differing behavior of a Rydberg atom in

a magnetic field. Classical orbits below the solid line are regu-
lar; above the dashed line the orbits are believed to be chaotic.
The dotted line indicates where the highest-lying level of mani-
fold n crosses the lowest-lying level from manifold n+3. The
shaded area is the region studied in this work.
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FIGG. 2. Calculated eigenvalue map for lithium I=0 odd-

parity states. The solid and dotted lines are the same as in

Fig. 1.

range that can be explored reliably. The shaded region
in Fig. 1 shows the range that we have selected for study.

Experimental studies of Rydberg atoms in high mag-
netic fields have been carried out by several groups
however, none has reported results with the resolution
needed to study energy-level statistics in the regular re-
gime. Lithium, in contrast, can be studied with high-
resolution cw laser methods. Furthermore, the states
which we have selected —odd parity —are hydrogenlike
in their statistics: The largest quantum defect 6 =0.05

as only a minor eff'ect on the spectrum, as will be dis-
cussed below. (Even-parity m=0 states are less hydro-
genlike because of the s-state quantum defect, 8, =0.40.)

The general experimental approach is similar to that
of an earlier study by our group, with the important ad-
vance of the introduction of cw lasers and precision opti-
cal metrology. A highly collimated atomic beam of lithi-
um traveling parallel to the magnetic field is excited to
Rydberg states by a two-step process: the 2S 3S
two-photon transition, and 3S Rydberg state. The
resolution is 10 cm ' FWHM. The absolute accura-
cy of all lines observed is + 2x10 cm ' the relative

~ ~

precision is set by the resolution. The magnetic field is
determined by exciting

l
hm

l

= l transitions and observ-
ing the paramagnetic splitting of the n=21 manifold.
Magnetic fields in the range of 1-2 T were used; the un-
certainty in field is ~ 2X10 T. Details of the experi-
ment will be published elsewhere.

We have also calculated the spectrum for the regime
reported here. This was done to provide a consistency
check on our experiments, giving confidence in our
methods for applications in regimes where calculations
cannot be performed, and to verify our calculational
method. Matrix elements of the Hamiltonian are com-
puted in a spherical basis by techniques described previ-
ously. ' The matrix is diagonalized at each field point.

The total number of states is 2500.) The results agree
with experiment to within the experimental accuracy. A

FIG. 3. (a) Sample of the data. This 2-cm ' section of the
spectrum, taken at 1.0797(2) T, showing 48 fully resolved
spectral lines in the regular regime, is typical. A total of 871
levels were measured over a range of —20 cm at eac of
three different fields. (b) The difference between the calculat-
ed and measured position for each line in (a). The error bar is
due to the limited step of the laser sweep Thweep. e energy Is rela-
tive to the zero-magnetic-field ionization limit.
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FIG. 4.G. 4. Adjacent-energy-level spacing histogram. The ap-
proximately exponential behavior characteristic of Poisson
statistics is evident. The depression of the first bin of data is
due to the missed levels, all of which were at small spacings.

sample of the data and comparison with calculations are
shown in Fig. 3.

Spectra were taken at 1.1, 1.2, and 2.3 T. With use of
a second-order polynomial fit, the energy scales were
inearized for each spectrum to remove small global vari-

ations in the density of states, and normalized to unit
mean spacing. Histograms of the separation between ad-
jacent levels were constructed, and added. The result is
shown in Fig. 4. This procedure assumes a lack of corre-
lations between the separate spectra which we believe to
be justified by the large number of level crossings be-
tween them. Results for the calculated spectrum are also
shown in Fig. 4. The total number of experimental levels
is 391, while the total number of calculated levels is 396.
Th e difference is due to missed levels at anticrossings in-
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duced by the lithium core. At these anticrossings all the
oscillator strength is transferred to one state, rendering
the other observable with our excitation scheme. " The
result is fewer levels at small spacings.

To investigate the difference between the lithium and
hydrogen spectra, we have also calculated the eigenval-
ues for hydrogen in the regime under study. Small
difI'erences in the spectrum are apparent due to an-
ticrossings induced by the lithium core, but their eff'ect

on the level-spacing histogram is minor. The average an-
ticrossing size is much less than the mean spacing, and
the anticrossings aA'ect only the first bin of the histogram
(see Fig. 4). Much more significant than the diA'erence

between lithium and hydrogen, however, is the diAerence
between either histogram and an exponential curve. As
pointed out by Delande and Gay, this discrepancy is a
manifestation of the fundamentally nonrandom nature of
a spectrum which has underlying periodicities.

Long-range correlation between levels provides a com-
plementary picture of energy-level distributions. A wide-

ly used measure is the h3 statistic of Dyson and Mehta. '

63(L) is the average mean squared deviation per unit en-

ergy interval between the energy-level accumulation
function (the "staircase" function) and the best-fit
straight line, where the average is over intervals of L
mean spacings. For Poisson specta, totally uncorrelated,
A3 (L) =L/ 1 5. For correlated spectra, A3 (L) increases
less rapidly with L. For Gaussian-orthogonal-ensemble
statistics, ' 63(L) increases asymptotically as ln(L); for
a "picket fence" spectrum, A3(L) is constant for large L
and equal to, '2 .

Figure 5 shows 43(L) for our data. It can be seen that
63 (L ) initially increases as L / 1 5, but departs from this
Poisson-type behavior and appears to approach a value

of roughly 0.4, indicating long-range correlations in the
spectrum. For some systems this type of behavior can be
related to the "break time" —that is the period of the
shortest closed classical orbit. ' We have found that the
observed behavior can be related simply to the number of
terms whose diamagnetic manifolds contribute to the
spectrum. This approach avoids the consideration of
classical orbits.

To study the efIect of the superposition of manifolds,
we have calculated A3 for a series of superimposed in-

commensurate picket-fence spectra. As shown in Fig.
6(a), h3 approaches the limiting value of N/12, where N
is the number of series. This merely illustrates the addi-
tive nature of h, 3 for superpositions of independent spec-
tra. ' To our surprise, however, we found the same be-
havior for a series of diamagnetic manifolds generated
for hydrogen, ignoring n mixing. As can be seen in Fig.
2, these manifolds are by no means equally spaced. Nev-
ertheless, the single limiting behavior A3 —N/12, where
N is the number of manifolds, appears to hold accurate-
ly.

Our data were taken over a regime in which varying
numbers of manifolds contribute. The limiting value,
A3 12 indicates that the mean number of underlying
manifolds is —5. This value is consistent with observa-
tions based on our calculated eigenvalue map. To obtain
a larger number of levels and contributing manifolds, we
have also extended the scans somewhat into the slightly
irregular regime. Figure 5 also shows the h, 3 statistic for
these data and the corresponding calculation. The limit-

ing value of h, 3 12 implying —7 contributing mani-

folds, is also consistent.
We believe that this experiment provides a credible il-

lustration for the Poisson-type statistics of spectra in the
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FIG. 5. The h3 statistics for our data (solid lines) showing
Poisson-type behavior for small L. Curves a, data strictly in

the regular regime shown in Fig. I (391 levels measured; 396
levels calculated). Curves b, data in and slightly above the reg-
ular regime (871 levels measured; 890 levels calculated). The
saturation of h3 with limiting values of approximately 0.4 and
0.6, respectively, is a manifestation of a small number of con-
tributing manifolds.
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FIG. 6. Demonstration of the additive nature of A3. (a) Su-
perposition of series of equally spaced lines. The limiting value
of A3 is N/12, where /V is the number of series mixed. (b) h3
of calculated spectra for hydrogen, ignoring n mixing, in re-
gions where a well determined number of manifolds have
crossed. The limiting value of A3 is again 1V/12, where /V is the
number of manifolds which have crossed.
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regime of orderly classical motion. Having approached
the problem experimentally, however, the question natu-
rally arises as to what conclusions about the nature of
the Hamiltonian can be drawn from a given data set.
The adjacent-neighbor spacing distribution provides
some indication of the degree of level repulsion, but in

practice obtaining a statistica11y significant number of
levels presents a considerable experimental challenge.
Although it is accepted that long-range correlations indi-
cate chaotic classical behavior, these can also arise in

spectra comprised of a limited number of orderly mani-
folds. Experimentally distinguishing between the various
types of limiting behavior is thus likely to be dificult.
Considering the large body of accurate data that is re-
quired for meaningful tests of spectral statistics and the
relatively modest conclusions that can be drawn, one is
natura11y led to ask whether more e%cient methods may
exist for using the spectral information.
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