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A new order parameter with a novel broken symmetry is proposed for the fractional quantum Hall
eAect, with the Laughlin state as the mean-field ground state. The classical Ginzburg-Landau theory of
Girvin is derived microscopically from this starting point and exhibits all the phenomenology of the frac-
tional quantum Hall eAect.

PACS numbers: 73.20.Dx, 03.50.Kk, 05.30.Fk

While there is now a good understanding of the prop-
erties of the states responsible for the fractional quantum
Hall effect (FQHE) in the lowest Landau level, ' a com-
pletely general characterization of these states has not
yet been given. Girvin has suggested that this might be
done by invoking a superfluid analogy, in which the Auid

is described by a complex scalar order parameter obey-
ing a Ginzburg-Landau equation, and the vortex excita-
tions are identified with the fractionally charged quasi-
particles of Laughlin's theory. ' In a later Letter, Girvin
and MacDonald (GM) showed that a certain modified
density matrix exhibits algebraic off-diagonal long-range
order in the Laughlin state, providing further evidence
for the superAuid analogy.

In this Letter, I construct the superAuid analogy ex-
plicitly on a microscopic basis. An order parameter that
shows genuine long-range order in the Laughlin state is
constructed, related to, but distinct from, that of GM.
The broken symmetry is identified, and the Ginzburg-
Landau action is derived at the classical, linearized level.
All the phenomenology of the FQHE at filling factors
v= 1/q follows, and generalization to other filling factors
can be made at least in principle. Physically, the order
parameter describes the special correlations of the
Laughlin state (binding of zeroes to particles).

We first exhibit a correlation function which possesses
off-diagonal long-range order, indicating that the usual
Laughlin state is not a pure phase and that a symme-
try is broken. We use (i) a lowest-Landau-level-
projected second-quantized field operator in the sym-
metric gauge,

OO n —]z[ /4

y(z) = g a„u„(z), u„=
n =0 (2tt2 "n!)

where a„ is a destruction operator for the nth single-
particle basis state u„, and (ii) Laughlin s quasihole
operator, in first quantization,

moves a particle bodily from the fluid, leaving a hole of
charge 1, U(z) moves particles outwards by increasing
their angular momentum about z, leaving a deficiency of
charge 1/q there if the state is a fEuid state of slowly
varying density p close to po=l/2ttq with no positional
long-range order. U(z)~ thus leaves the same charge
deficiency as y(z), and the essence of the present ap-
proach is that these two types of hole states are physical-
ly equivalent, so that they have a nonzero overlap.

In the normalized Laughlin ground state
I OL,N) for N

particles, whose (unnormalized) coordinate representa-
tion is

Q(; —, )'exp

we can show that

&ot'N IU'( )'w( )Yt( )U( )'10L N)

=po '&0, ;N+11p(z)p(z')10, ;N+1)- po (3)

10,;0)= g Ia~Ie ' 'Io, ;N&,
N=I

(4)

where II atv I J is a binomial distribution function for N
with mean N »1 and variance of order N, and 0 is arbi-
trary. For this state and arbitrary z,

as
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which vanishes identically. Here and below we denote

U(z) I
a&=U(z)

I a&/&a I IU(z) I I
a&'

where
I
a) is a normalized fluid state.

Equation (3) shows that the Laughlin state is not a
pure state. A pure state, in which ytU~ has a nonzero
expectation value, can be constructed as

U( ) =+(;—), (2)
&+t(z))—=&yt(z)U(z)'& po)

'e"

in the N-particle subspace. Note that while y(z) re-
as N~ ~, and this defines our order parameter. From
now on, fluid states

I a) will be taken to be pure states
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with nonzero order parameter. Physical properties will
be more transparent when working with pure states.

Since y~ increases N, the particle number, by 1, and
U~ increases M(z), the angular momentum about z, by
qN, @AU~ breaks the symmetry generated by 2 N+M/
qN, while —,

' N —M/qN is unbroken. %' characterizes the
Laughlin state, since

Landau level. Equation (6) can equivalently be obtained
from adiabatic transport of the hole. A (z) can be
calculated approximately by first (exactly) commuting
p(z') to the right to give

&a1U'(z)'U(z) IR (z', z)1a)
(a1Ut(z) U(z) v1a)

10L,N) = d z yt(z)U(z)qe
iJ

' N

1o&

(2a/az-+iA, )U(z) v1a&=—O,

giving us

iA —(z) =q J, &U (z) p(z')U(z) &,
z z

up to a normalization factor, in exact analogy with the
ground state of a Bose gas or BCS superconductor. Thus
the Laughlin state as in (4) is precisely the mean-field
theory of the FQHE.

Note that (0't(z)) is a local order parameter, even
though U(z) acts on particles far from z, because an (in
principle distinct) value can be associated with each
point z; this allows it to have thermodynamic significance
in a Ginzburg-Landau description, as will be shown.

While the present order parameter resembles that of
GM in involving a particle bound to a Ilux tube (here
U~), it differs in that we find true long-range order in the
Laughlin state whereas GM find only algebraic order.
The algebraic order of GM is apparently an artifact of
their choice of Aux operator. %'e note that any choice of
Aux operator in place of U gives a candidate order pa-
rameter for some fluid ground state of filling factor I/q,
since by a Berry-phase calculation the Aux operator will
be fermionic if q is odd, and the counting of charge
makes the combination, like y~U~, a locally neutral
Bose-type operator, which may Bose condense, giving a
liquid state.

In constructing the Ginzburg-Landau action, we will
use states

1a;z,n&=(2"n!) ' '(28/Bz+iA ) "U(z)v1a&, (5)

where 1a) is a (pure) Iluid state. Equation (5) is the
generalization to the normalized hole state U(z')~1a) of
the expansion of the unnormalized state U(z')~1a) in
powers of z' —z about some point z. The vector potential
A —=A —i A~ accounts for the normalization and gen-
eralizes analyticity 8/Bz =0,

y(z)1a)= g p 1a;z,m),
m=0

where a =A —A satisfies

e.p B.ap =2xq(&p) —pp) . (lo)

In Eq. (9) the 1a;z,m) for different m were treated as
orthonormal; if 1a& is the ground state, this is correct;
otherwise, there are overlaps between diAerent n values
because e,p8, Ap is not constant. These overlaps and the
norms of the states may be calculated recursively; the
definition of A — implies that 1a;z,O& is normalized and
orthogonal to 1a;z, I) in general. An orthonormal set of
states can be constructed by the Gram-Schmidt method.
This introduces corrections to the 1a;z,n) which, howev-
er, can be neglected in the linearized calculation de-
scribed below, because a derivative of a slowly varying
expectation value of either p or 9 always appears, which
is certainly already of first order in the deviation from
the ground-state value. Hence, we may use (5) in (9).
We see that

&p& = 1(e)
1

'+
We now derive the Ginzburg-Landau theory for (+)

by first obtaining approximate equations of motion for
(id/di)(+t) and then writing down an action whose vari-
ation gives these equations.

The Hamiltonian projected into the lowest Landau
level contains only potential-energy terms:

where R„(z',z) is a one-body operator. Equation (7) is
now approximated by the insertion of 1a)(a1 between
U~ and Rq, in which case, remarkably,

—,
' e,p&.Ap=i 8A /Bz = —xq(p(z)&,

where a=x,y, 8„=8/Bx, etc. For a circular droplet of
density (p) =po=(2xq) ', we find A —= —,

' iz, the sym-
metric gauge.

Because of the existence of the order parameter, we
can relate hole states by the approximate expansion

H= —
I d z V,„t(z)p(z)+ 2 d zid z2V(z~ —zq)y (zi)y (zq)y(z2)y(z~),

where V(z) is a function of 1z1 only.
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Working in the Heisenberg picture, we straightforwardly obtain

U(.) =g (2 ..)-'(
. dye(z)-

dt n=0

' n

i—a+ &e t(z))

—V (0)&et(z))+V2V (0) ——,
' ia

az
(12)

II

In the interparticle potential terms, use has been made of (9), linearized in the deviation of &+ ) from its ground-state
value, and higher derivatives have been dropped. The "Hartree-type potential, "

VH( 1

— ) =„d',v(, —2)&U'( )~p( 2)U( )~), (13)

is evaluated in the ground state and is then a function of
~
z1 —z

~
only. I have neglected in (12) terms arising from

taking &+t) to be its ground-state value, and keeping the change in VH to linear order; these "exchangelike" terms
might give mass, quartic interaction, or additional gradient-squared terms in the Ginzburg-Landau long-wavelength ac-
tion. The omission of these terms, which has no eAect on the physics derived here, is our main dynamical approxima-
tion.

The remainder of the equation of motion is obeyed by the projection of (i d/dt)U(z)~
~
a) onto the basis set (5); one

finds
' n

U(z)~~ a) =@(z)
~
a;z, o)+ g (2"n'. ) ' 2

d
dt n=l Z

&c(z)
~
a;z, n), (14)

&Ut(z) ~(i d/dt)U(z) ~) 2, t)V t, ' && +1(z' z)&+cz =
&U'(. )~U(z) ~) " az'

tlV ' &yt( )&, (, )1//( ))
d zid z22 zi —z2 15

8Z 1
r=0 Zl Z

and N =Re+c,. I have approximated by decoupling as in (7) and (8) and also dropped a term in the two-body part that
involves both [p(z2), U(z) ] and R„+1, which is a higher-order correlation. Then, by manipulations similar to those
used in (8) and (12), we obtain

2
8+c
az

~ d2 ~ rlV, q
—

1
1

~ 12r —[z —z'~'/2
2

'"' (z') g —2xqV V (0)&+t(z))
Bz' =o 2'r!

+ —,'ia+ &e(z)),
Z

(16)

up to higher gradients of &+). From the exact expressions for a, &,

da+/dt + 2 8&/Bz —=2 8&c/Bz,

and the right-hand side of (16) can be interpreted as the drift-motion current due to the external and interparticle po-
tentials.

Finally,

i &e (z)&= g (2ttn1) ' d z'V, „q(z')e ' ' 2
. d
dt n J

' n

ia+ &e—t(z))

—P (2ttqn!)
n=l

an —
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' n

ia &e—t(z) &

+ [e(z) —vH(O)]&~'(z))+v'v„(0) ——,
' ia+

az

to linear order in deviations from the ground state. Note the similar structure of the first two terms.
Since we are working at indefinite particle number and area, we must add chemical potential and pressure terms to

the Hamiltonian, which can be incorporated in V,„&, this takes the form of a constant potential in the interior of the
droplet, with slowly rising confining walls near the edge, and can be arranged to cancel in the ground-state case the
terms on the right-hand side of (18) with no gradients of &+t). Thus (i d/dt)&%" t) vanishes in the interior of the droplet
in the ground-state case where &+t) is uniform in space.

With the remainder of V,„, omitted for clarity, Eqs. (10) and (16)-(18)can be obtained by variation of the Lagrang-
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ian density

L =Vti V —
& C 2 —ia — Pt 2 +iaq 0'+4t. t4 t

—
pp (2zq) e, B,a ] — e, a, ad ) B 1 d

dr Bz Bz
P P 4 P d] P (19)

where C= —,
' V VH(0) (as usual, L is determined by the

equations of motion only up to total time derivatives).
The same linearized equations of motion can be solved

for plane-wave excitations to yield a dispersion relation

co =C + —,
' Ck (C+ —,

' Ck ) .

thus this collective mode has a gap co =C as k 0 which
is due to the long-range gauge forces in the action (19)
(the Anderson-Higgs mechanism). The roton minimum
at a larger wave vector k —po is not obtained within
the present approximation. The fractional statistics '
of the vortices and the quantized Hall conductance also
follow from (19).

The physical meaning of the order parameter (%'t(z))
is that it is the amplitude for finding a particle at z at the
zeroes of the many-particle wave function, and by (9) its
gradients represent the amplitudes for displacements
from the zeroes. A nonzero displacement leads to a
higher Hartree energy (13) (which just involves the
two-particle correlation function) and hence to the
stiA'ness constant C= —,

'
V VH(0). The long-range gauge

forces are related to those in Laughlin's plasma analo-

gy, but here take on a dynamic as well as static role.
It should be possible to describe quantum Auctuations

about the Laughlin state by quantizing the action (19),
but this should be done with care to ensure a connection
with the microscopic description. Since the Laughlin
state is exact for the pseudopotential Hamiltonian" with

V] V3 . . ~ Vq —2&0, n ~ q, quantum fluctuations will be
controlled by the size of V„, n ~ q.

A similar order parameter can be constructed for gen-
eral filling factors v =p/q with use of yt U, and also ex-
tended to spin-singlet states these extensions and de-
tails of the present work will be given elsewhere. '

A brief report of part of this work was given previous-
ly. ' After this work was completed, we received a pre-
print from Rezayi and Haldane, ' who studied related
order parameters numerically, and showed that they are
nonzero in FQHE states at v = —, , —,

' but vanish in

compressible states. We also learned of work by Zhang,
Hansson, and Kivelson' on the Ginzburg-Landau ac-

t

tion.
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