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Electromagnetic Properties of Generalized Majorana Particles
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We prove a theorem stating that a massive Majorana particle (a CPT-self-conjugate particle) with ar
biirary spin J can possess only an anapole moment and multipoles of that. We also show that massless
Majorana particles, except those of spin 2, do not have any single-photon electromagnetic form factor.
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where tlJ(M) is a phase factor satisfying

g, (M') =(—1) q, (M),

Soon after the extensive studies of the electromagnetic
properties of the spin- —,

' Majorana particle' which, in

particular, showed that these particles possess only an
anapole moment (which is different from the charge,
magnetic, and electric dipole moments), Radescu ex-
tended this result to Majorana fermions with higher spin.
Defining a Majorana particle to be a CPT-self-conjugate
particle, it is worth inquiring whether the property that a
Majorana can only have an anapole moment (and higher
multipoles of it) also holds for Majorana bosons. A pre-
liminary investigation pertaining to the spin-1 boson has
found that this is indeed the case. In this Letter we

present a general proof of the above property. We also
demonstrate that massless Majorana particles, with the
exception of those with spin —,', have no single-photon
electromagnetic couplings at all. We will use the for-
malism of the multipole expansion of the electromagnetic
current. An alternative derivation which is manifestly
covariant will be presented elsewhere.

A massive particle with spin J can be specified by the
state I p;J,M& with p its momentum and M the spin pro-
jection along a given axis, say z in its rest frame. W
will denote the CPT operation by e. For a Major
particle we have

as can be deduced by using the lowering and raising
operators of the angular momentum combined with
CPT.

Let us now consider the electromagnetic transition
process M(p;) M(pf)y(k) with M(p) being a CPT
self-conjugate particle of momentum p and y(k) a virtu-
al photon with momentum k =p; —pf. To derive the
electrostatic form factors, the multipole expansion
analysis is conducted in the Breit frame in which

(3)p; =(qo, q), pf =(qo, —q), k =(0,2q) .

Here, we look at the matrix elements of the electromag-
netic current j„(0) between the initial state I q;J,Mt&
and the final state I

—q;J,Mf&, i.e. ,

q;J, Mf I jo(0) I
q'J M & =II~ M;(q)

( —q;J, Mf I j(0) I q;J, M;& =II~,M, (q) .

(4)

eI p;J,M&=q, (M) Ip;J, —M&,

e
It follows from the current conservation that the spatial
part of the matrix element should be transverse with
respect to q: q II~ ~, (q) =0. Taking this constraint

(1) into account, the multipole expansion of the matrix ele-
ments of the electromagnetic current is given by

J L J
II~,M, (q) = 2 ( —1)' '

M M M (t I q I )'gjz(q') YzM(q),
L=0 Mf MM,

(5)

II' M, (q) = g ( —1) '

M M M (i IqI) +"QJz (q )Yz~(q),
L=1 Mf MM,

k =0, 1

where M =M; —Mf,
spherical harmonics defined byJ L J

—Mf —M M;

is the Wigner 3j symbol, Yz~ (q) are the ordinary sPher-
ical harmonics, and Yz~(q) are the transverse vector

1Yzst(q) = qxVYzm(q),
L L+1 ] 'i2

YzM (q) =q x YzM (q) .
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(7)

The expansions (5) were derived in Ref. 6 using the
Wigner-Eckart theorem. It follows from the hermiticity
of J„ that all the form factors QJz and Qjz are real.

Theorem l.—If the underlying theory is CPT invari-
ant and the initial and final particles are CPT self-
conjugate, then

QJz(q') =QJ(z'(q') =0,
i.e. , only one set of multipole moments, QJz (q ), exists.

Proof. —Defining
I (tze) =e

I (tz), with 0 being an
operator in the Hilbert space of states

I (tz), we have

&(t I
o I (t

'& =
&(t o I

eo'e '
I yo) . (s)

Using this formula and the phase relation (2), we obtain

J L J
M; —M —Mf

J L J
—Mf —M M;

that

QJz(q') = —QJz(q'),

Q (X)(q2) ( i )k+1Q (X)( 2)

The additional minus sign is because the current opera-
tor j„(0) is odd under a CPT transformation. It follows
from the expansion (5) and the symmetry property of
the Wigner 3j symbol,

&
—q;J, Jvlf I jo(o) I q;J,m;) =o,

2J
q'J, Mf I j(0) lq;J M &= 2 ( 1)'

for any J. Therefore QJz (q ) =QJz (q ) =0 and the
theorem is proved. The matrix elements of the current
in the Breit frame can be written ~s

(i2)

~ ~ QJ'z'(q')(t
I
ql)'"YzM(q) .—Mf —M M;

The matrix elements of the current in an arbitrary frame
can be obtained by an appropriate boost. The theorem is
valid not only for point particles but also for extended
objects in the nonrelativistic limit since the proof relies
only on the rotation behavior and CPT transformation of
the state.

The multipole moments characterized by YzM(q) are
the toroidal moments. ' The total number of these
toroidal moments could be at most 2J for a particle of
spin J. As an example, the neutral pion has no elec-
tromagnetic structure, the spin- —,

' Majorana neutrino
can possess only one electromagnetic form factor, and
the Z boson can possess up to two form factors. Further-
more, if C is conserved then all form factors vanish
This fact shows that the toroidal moments are C-
violating quantities in contrast to the magnetic and elec-
tric dipole moments. In addition, the anapole moment
has the special feature that it interacts only with the
external current, in contrast to the magnetic and electric
dipole moments which interact with the external fields.
On the other hand, if P is conserved and C and T are
violated (CPT conserved), then the toroidal moments

QJz (q ) vanish for odd values of L, and if T is con-
served and C and P are violated, then the QJz (q ) for
even values of L vanish. This has been shown explicitly
for the case of the Z boson which at the one-loop order
(CP is conserved) possesses only one anapole moment.

Now we turn to the massless case. The state
I q, X) of

a massless particle of spin J is labeled by the momentum

q and the helicity X which can only assume two values,
~ J. For a massless Majorana particle, the analog of
Eq. (1) is

e
I q;x) =q(q, x)

I q, —k&, (i3)

where

tl*(q, —X)q(q, X) =( —1)", (i4)

as a consequence of e =(—1)
Theorem 2.—If the underlying theory is CPT invari-

ant, and the initial and the final particle states are CPT
self-conjugate and massless, the matrix elements of the
electromagnetic current between the initial and final
states, &

—q;Xf I j„(0)lq;X;), vanish for all spins except
J= —,

'
. The matrix elements of the spin- —,

' particles con-
tain only one form factor given by the anapole moment.

Proof. —Choose a coordinate system such that q is
parallel to z and define

Q~ ~, (q) =& q;~f I jo(o) I q;x &,

Q~ 2, (q) =& q')f
I j~(o) lq;) &

(is)

q'~) =c(q ~)exp( iver J&) I q'a) (is)

with c(q;k) being an arbitrary phase factor. Using Eqs.

with j~ (0) =j„(0) ij~ (0). First, we consider

Qq~q, (q). Inserting a rotation about z through p [this
technique was used by Weinberg and Witten in Ref. 8;
they arrived at the same conclusion for
&
—q;k I j„(0) I q;k)], we have

&
—q;) f I jo(0) I q;& & =explitt 4. +~f)l

x& —q;&f I jo(0) I q'~ &.

Then Qz z,i(q) could be nonzero only for Xf = —X; =k.
To apply a CPT operation, we relate the state

I

—q;X) to
the state I q;k) through a x rotation about the y axis:
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Q+(q) = —c*(q; ——,
' )c(q; —,

' )Q —(q), (20)

with c(q; ~ —,
' ) being the phase factors in (18) and only

one dynamical form factor is left over. Theorem 2 is

proved. This rules out the possibility of the graviton and

the massless gravitino having a single-photon elec-
tromagnetic form factor.

Similar theorems may also be proved for the matrix
elements of photoproduction

(q;J,M ), —q;J,M2
~ j„(0)~

0&

by only using spin and statistics (i.e., the fact that the
final Majorana particles are identical particles).
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(8), (13), (14), and (18) we obtain

Q~ -~(q) = —
Q~ -~(q),

for any J. Therefore, Qz —z(q) =0. Similarly, the sym-

rnetry with respect to rotations about i requires

p;+Xf = —
1 for Qz z. (q) and X;+Xf=+ [ for Qz z, (q)

and this can be satisfied only for J= —,'. The two non-

vanishing matrix elements

Q ~ =( —q; T —,
'

~ j ~ (0)
~ q;+ —,

'
&

may be related through a combined action of CPT and
the tr rotation about the y axis as in the case of jo(0).
The relation is

sor A. I. Sanda for helpful discussions and their reading
of the manuscript. We are also indebted to Professor N.
Dombey and Professor A. Pais for fruitful conversations.
One of the authors (H.C.R.) would like to thank the
Lawrence Berkeley Laboratory for the hospitality during
his visit where part of this work was done. This work
was supported in part by the U.S. Department of Energy
under Grant No. DE-AC02-87ER-40325 TASK B.

~'"~Present address: Elementary Particle Physics Group,
Concordia University, Sir George Williams Campus, 1455 de
Maisonneuve Boulevard, West, Montreal, Quebec, Canada
H3G 1M8.

'B. Kayser and A. S. Goldhaber, Phys. Rev. D 28, 2431
(1983), and references therein.

2Ya. B. Zeldovich, Zh. Eksp. Teor. Fiz. 33, 1531 (1958)
[Sov. Phys. JETP 6, 1184 (1958)].

3E. E. Radescu, Phys. Rev. D 32, 1266 (1985).
4A. Barroso, F. Boudjema, J, Cole, and N. Dombey, Z. Phys.

C 28, 149 (1985).
sF. Boudjema and C. Hamzaoui (to be published).
6V. M. Dubovik and A. A. Tcheshkov, Fiz. Elem. Chastits

At. Yadra 5, 791 (1974) [Sov. J. Part. Nucl. 5, 318 (1974)];
V. M. Dubovik and L. A. Tosunyan, ibid 14, 1193. (1983)
[ibid. 14, 504 (1983)].

7A. R. Edmonds, Angular Momentum in Quantum Meehan
ics (Princeton Univ. Press, Princeton, 1960).

sS. Weinberg and E. Witten, Phys. Lett. 96B, 59 (1980).


