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Dynamic Properties of a Two-Dimensional Heisenberg Antiferromagnet at Low Temperatures
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By using a combination of hydrodynamics, scaling, and renormalization-group analysis, and a fit to the
simulations of a classical rotor model, we can predict the form of the dynamic structure factor S(k, co)

of a two-dimensional quantum Heisenberg antiferromagnet at low temperatures, if the zero-temperature
spin-stiAness constant p, and magnetic susceptibility g& are known. These results should be applicable
to inelastic neutron scattering in stoichiometric La2Cu04 above its Neel temperature, with only p, as an

adjustable parameter.

PACS numbers: 75.25.+z, 74.65,+n, 75. 10.jm, 75.30.—m

The discovery of high-temperature superconductors
has led to a renewed interest in quantum antiferromag-
nets. Recently, Endoh et al. ' have made neutron-
diffraction experiments on the stoichiometric insulating
phase of La2Cu04 and have observed strcng antiferro-
magnetic correlations in the plane of the copper atoms
above the Neel temperature T~ where three-dimensional
order sets in. Chakravarty, Halperin, and Nelson
(CHN) have argued that these measurements could be
understood in terms of a nearest-neighbor two-
dimensional quantum Heisenberg antiferromagnet
(QHAF) on a square lattice with spin S = —,

' and a large
coupling constant J of order 1200 K.

CHN argue that the dynamic properties of the QHAF
at sufficiently low temperatures and frequencies, and
wave vectors close to the antiferromagnetic Bragg peak,
may be related directly to the low-frequency long-
wavelength behavior of a classical lattice rotor model
(CLRM) [defined by Eq. (13) below], which can be
studied by molecular-dynamics simulations. The rela-
tions between the QHAF and CLRM were established

by a combination of hydrodynamics, scaling, and a re-
normalization-group analysis in which it was necessary
to include terms up to "two-loop order. " There are no
adjustable parameters in this correspondence provided
that the zero temperature p-roperties of the QHAF are
known (specifically the spin-stiffness constant p, and the
uniform magnetic susceptibility g& for magnetic fields

perpendicular to the sublattice magnetization are re-
quired). In applications to a physical system such as
La2Cu04, ~here the microscopic coupling constant is not
known, it is convenient to use p, as an adjustable param-
eter which sets the energy scale of the system; the
remaining parameters are then determined with an accu-
racy su%cient for our purposes via a simple spin-wave
expansion for the nearest-neighbor spin- 2 Heisenberg
model on a square lattice at T =0.

In this paper we present a molecular-dynamics simula-
tion of the CLRM which tests the scaling forms of CHN
and determines the previously unknown scaling func-

tions. We are therefore able to give a quantitative pre-
diction for the QHAF that can be compared in the fu-
ture to inelastic-neutron-scat tering experiments in

La2Cu04. %'e simulate lattices of size up to 256X256
and thus we can probe temperatures lower than has been
done so far. We reproduce the results for the static
order-parameter correlation function S(k) with im-

proved accuracy, and we find that the dynamical correla-
tion function S(k, co) is described very well by the scal-
ing forms of CHN. The location of the spin-wave peaks
agrees with the approximate CHN prediction and the
order-parameter relaxation rate at k =0 is in good agree-
ment with the value obtained by Grempel from a
coupled-mode calculation. (Note, in applications to the
spin correlation function measured by neutron scattering
in LaqCu04, the wave vector k must be interpreted as
the distance from the 2D antiferromagnetic Bragg
point. )

According to CHN, the dynamic order-parameter
correlation function S(k, co) at wave vector k and fre-
quency co, for either the QHAF or the CLRM, in the
scaling regime, can be written in the form

S(k, co) =cop 'S(k)e(q, v),

cop=cg '(T/2trp, ) '", (2)

(3)

where b is the lattice constant and B~ is a dimensionless

where S(k) is the equal-time correlation function, g is

the order-parameter correlation length at temperature T,
c is the zero-temperature long-wavelength spin-wave ve-

locity, given by c (p, /g&) 't, and the scaling variables
are v=co/cop and q =k(.

The equilibrium statistical properties of the CLRM
are identical to those of the classical Heisenberg fer-
romagnet. According to the two-loop renormalization-
group analysis, the correlation length for these models
may be written in the asymptotic form
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constant. The value of B~ was originally determined by
Shenker and Tobochnik via Monte Carlo simulations to
be B~ =0.01, and we obtain the same result. The
second term in the denominator of (3), which is small
compared to the leading term in the limit T 0, is not a
result of the renormalization-group analysis but is only a
plausible correction term introduced by Shenker and To-
bochnik to improve the accuracy of fits at finite values of
T. We follow their suggestion, and also include similar
corrections in Eqs. (5) and (7) below.

According to CHN, the transformation from the
CLRM to the QHAF can be implemented by replacing
the lattice constant b, in (3), by the temperature-
dependent quantity

b, ti= J32e i'(hc/T),

which means that for a QHAF with lattice constant a,

(4)

exp(2zp, /T)
( =Cga

I + (T/2mp, )
(5)

Using the results of Oguchi for the zero-temperature
properties of the nearest-neighbor QHAF on a square
lattice, CHN find C~=0.5, for 5= 2 .

According to the renormalization-group analysis, the
equal-time correlation function S(k) has the scaling
form

S(k) =S(k =0)f(kg),

B N
S(k =0) =

[(2~p, /T)+ il' '

BgBf =4z .

Our molecul. ar-dynamics results were fitted with a
two-Lorentzian form for the dynamic scaling function:

e(q, v) = ', , +
(v vq) +pq (v+vq) +1'q

(I0)

while the dimensionless spin-wave frequency vq and the

where Bs is a universal constant, and No is the value of
the order parameter at T=O. For the CLRM, we have
No= I, while for the S=

& QHAF, we have No=0. 31.
Our normalization is such that for high temperatures,
S(k) =b for the CLRM and S(k) =a S(S+I) for the
QHAF. The Monte Carlo results of Shenker and Tobo-
chnik imply Bz = 180; we find B~ = 125.

A one-parameter approximate form for the scaling
function f is

I+ 2 Bfin(1+x )
f(x) =

1+x
In the limit T 0, with kg ~ but kb, s.&&1, we must
have S(k) —2TNo/p, k . This implies the relation

width yq were fitted with the expressions., =(-', ) '"q[S+ —,
' in(i+q')]'"

(I + q 2) 1/2

[i+ —,
' Oln(i+q')]

with the exponent w=2, and four adjustable fitting pa-
rameters, yo, p, 0, and 6. The choice of these expres-
sions was inlluenced by the following considerations: (i)
According to the hydrodynamic analysis of CHN, the
spin-wave frequency must satisfy v~ —( —', ) 'i qlnq, for

q ~. (ii) For large values of q, we believe the width
of the spin-wave peak should be dominated by scattering
from a thermally excited spin wave with wave vector k'

such that k'( is comparable to q. A self-consistent
analysis, whose details will be given elsewhere, suggests
that for large q, y~/v~ —constx(lnlnq)/(lnq) . Equa-
tion (12) agrees with this form for q~ ~ if we ignore
the slowly varying factor ln lnq. (iii) Our molecular-
dynamics simulations were fitted very adequately by a
single Lorentzian at q =0: hence it was appropriate to
choose a form where vq~ 0 for q~ 0. Attempts to fit
with a form which allowed vo&0 led to a value of vo

which was not distinguishable from zero. (iv) Equations
(10)-(12) give a form for &(v, q) which is analytic in q,
for q~ 0.

We shall now discuss in greater detail the method of
simulation of the CLRM and the results we obtained.
The model is described by a classical Lagrangian of the
form

I. =—g ( 6, O; (
2+, g n,"n, , (13)

b

where [Q;] are a set of three-dimensional unit vectors,
representing the orientations of the rotors associated
with the sites [i] of a 2D square lattice, and the second
sum is over nearest-neighbor pairs (i,j) The coeffi.cient
K is a stiff'ness constant which we may identify with the
constant p„while the moment of inertia I of the rotors is
related to g& by g& =—Ib . Each site represents a rotor
which can be thought of as a point mass constrained to
stay on the surface of a unit three-dimensional sphere.
The interaction between neighbors is such that they want
to be aligned. We simulate the dynamics at finite tem-
perature of a N x N square lattice of rotors, with N =256
for the low temperatures.

In order to obtain a canonical ensemble, we couple the
system to a heat bath, which introduces a random force
and a damping on each rotor. The equations of motion
are then Langevin equations:

~, x jj, = — ~, xg'(~, —~J)
J

—y~; x ~;+~; x ri; (r ),
where y is the coupling constant to the heat bath, the
sum is restricted to nearest-neighbors of i, and the ran-
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dom force g,: obeys

(t),'(t)t)~(t')) =2) kjiTh;, 8(t —t')B.p. (i5)

We use units such that E = 1, I = 1, and b = 1. At the
eginning of the program the rotors start from a random

position with zero initial velocity and are strongly cou-
pled to the heat bath () =1) for 1200 iterations. This is

long enough to bring the measured temperature T
(T=m'z— )k;„«,„to within 1% of the input temperature
T. We then reduce the damping to y=0.00625 for our
actual runs. The nonzero y is used to assure that there is
no secular drift in the temperature, and also to assure
that the system is not trapped in one region of phase
space. In fitting our formulas, we have corrected for the
finite external damping by including a term 0.00625/coo
on the right-hand side of Eq. (11).

The correlation functions S(k, tu) are calculated for a
run which corresponds to 2 ' time steps. At the end of a
run, a configuration of the system is preserved and is
then used as the seed of the next run. At equilibrium,
positions and velocities are independent; hence a new
thermalized sample is obtained by starting from the posi-
tions at the end of the previous run and giving the rotors
a set of new velocities according to a two-dimensional
Maxwellian distribution at the given temperature. At
each temperature a number of runs (at least six) are
made and the quantities of interest are averaged.

Th de discretized equations of motion are a modified
version of the algorithm used by Morf and Stoll:

n(t+a) =no(t+a)+(e' ""—1)[Oo(t+a) —~(t)]
~'e' ~""F(t)+O(~'), (i6)

where Qo(t+6) is the position the rotor would have at
time t +h, if there were no forces and no friction. The
force F(t ) is the combination of the forces derived from
the Hamiltonian computed at time t and a random force
which represents g;. We choose a time step h, =0.04

[
~ j

which is about 9 of the inverse of the maximum vibra-

tional frequency to,„=2J2.
In order to save computer time, we actually use the

random force and damping only on every eighth time
step. Also, rather than using a random force with a
Gaussian distribution, we employ a rectangular distribu-
tion with the correct second moment. Because the cou-

pling to the heat bath is very weak, this should be a valid

procedu. e. The random number generator employed has
a cycle time much longer than the number of times it is

called in our calculations.
We now describe the fit. The static correlation func-

tion S(k) is fitted first by assuming Eqs. (6) and (8),
and choosing a value for Bf and a range of the Brillouin
zone over which the fit is performed. The correlation
length g is extracted by minimizing the g with S(k =0)
and g for fitting parameters. The weights a(S(k)) in

thee g are given by the statistical rms fluctuation of
S(k) over different runs. The scaling formula (6) used
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FIG. l. The ratio S(k, co)/S(k) plotted for three different
values of k [kb =0, 0.196, and 0.557 in the (0, 1) directionl and

two different temperatures (T=0.614 and 0.692). The data
an; represented by points, and the solid curves show ou«t with

parameters 8 = 1.05, yo =0.&6, p = 1 4,
are indicated.
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is only valid for small kb; therefore, one must choose a
range of k to perform the fit. We found that when the
range was changed from [O, z/4] to [0,~/8], this led only
to a change of order 1% or less in the value of g (for a
reasonable value of Bf). For a given Bf, one obtains g
and S(k =0) as a function of temperature and Eqs. (3)
and (7) give a value for B~ and Bs for each temperature.
The "best" choice of Bf gives the smallest variation in B
and B~, the values obtained should then be consistent
with (9). For the best fit (Bf=0.10, B~ =125, and

8~ =0.0100) the formula (3) is equal to the fitted value

of g within 2% for four temperatures from [T=0.614,
(=25.5b] to [T=0.692, (=9 2b],. while S(k =0) as is

given by (7) is equal to the fitted value within 5% in the
same temperature range, and (9) is satisfied within 2%.

The dynamical correlation function is then fitted with

(10) by minimizing the g at each temperature. Equa-
tions (11) and (12) contain more parameters than are
actually necessary to fit our data within the accuracy of
the calculations; we can proceed in two diferent ways.
First one can adjust (11) to fit the location of the spin-
wave peak at large k, which gives a value of 6= 1.7. We
th en can do a best fit over the other parameters and etge
yp=0. 80, p =2.0, and 0=0.15. Alternative1y, we can let
all four parameters be free and minimize the g; we then

get 6= 1.05, y'p =0.86, p = 1.4, and 0=0.08. The value

for yp which determines the relaxation rate at k =0 does
not change much from one fit to the other, and we esti-
mate the correct value as yp=0. 85+0.15. This value

appears to be very close to the value obtained by Grem-

pel in his coupled-mode approximation (Grempel pre-
dicts yo = 0.96). By contrast, the approximation of Au-

erbach and Arovas gives a characteristic frequency
whose temperature dependence differs from our Eq. (2),
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FIG. 2. The zero-temperature spin-wave frequency (dashed
curve) compared to the scaling frequencies at T=0.614 for
6 = 1.7 and 6 = 1.05 (solid curves) and to the points obtained
from a best fit of our data by the sum of two Lorentzians.

and a line shape which seems quite diferent from ours.
Our data for S(k, co)/S(k) are shown in Fig. 1, at

three values of k, for temperatures T =0.614 and
T=0.692. The solid curves are the fit with 6=1.05.
The correlation lengths, in units of the lattice spacing,
are g =25.5 and g =9.2 while coo =0.0125 and ado

=0.0368 at the two temperatures. The broadening due
to our use of a finite external damping constant

y =0.006 25 is important primarily for k =0 at the
lowest temperature. One qualitative diff'erence between
the data and our two-Lorentzian fit is that for intermedi-
ate values of kg, the data have more weight near co =0.
Thus S(k, ro) has a maximum at roa0 only for q~ 2,
while for our fitted form this occurs as soon as
vq ) 3 fq roughly for q ~

& . The, added weight at
small m depletes the higher-co region and consequently
the fitted form for N(q, v) is always greater than the
data for v)) vq.

In Fig. 2, we show data for the spin-wave frequency
cop for various values of k, at T=0.614, obtained by
fitting S(k, ru) by the sum of the two Lorentzians. The
solid curves are the predictions of Eq. (11) with 6=1.7
and 6 =1.05 as indicated. The dashed curve is the spin-
wave frequency at T=O. The net reduction in mI, for
T&0 is interpreted as arising from a combination of a
reduction in the eAective spin stiAness (which reduces
rok by a factor of =0.65, at k =0.6) and the factor
( —,

' ) ' in Eq. (11) which increases col, and arises from
the difference between g&(T) and g~.

The scaling and renormalization-group analysis used
in this paper is valid, in principle, in the limit T 0, for
fixed arbitrary value of the product kg. In practice, we

expect that the necessary condition on temperature is
that g be large compared to the lattice constant. For this
to occur in the classical model it is necessary that

2np, /T~6. For the S= 2 QAFM, however, this only
requires that 2zrp, /T~2. Indeed, the asymptotic forms
(5) and (7), with the parameter values predicted by our
analysis, agree remarkably well with quantum Monte
Carlo results for the QHAF for 2zrp, /T = 2. For S(k),
the expected restrictions on wave vectors are k ~ zr/2b for
the CLRM and k«T/hc for the QHAF. For S(k, co)
there is an additional restriction which for the QHAF is

roughly of the form ka5(a/g) ' (cf., Appendix D of
CHN). For larger values of k, the factor ( —', ) 'i in the
spin-wave frequency, Eq. (11), should be replaced by a
factor [g~/g~(T, k)l ', which tends to unity for large
values of k.

If one desires to extend the formulas to the quantum
region k = T/Ac, one should include on the right-hand
side of Eqs. (6) and (I) additional factors, respectively,
of xcothx and ru/[T(e"i 1)xco—thx], where x=Ack/
2T.
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