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Disorder in Josephson-Junction Arrays in a Magnetic Field
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We consider the eAects of disorder in Josephson-junction arrays with an average Aux quanta per pla-
quette fo We sho.w that for fo n+=—,', positional disorder decouples the excitations responsible for the
destruction of superconductivity from other excitations so that near the critical field f„ the supercon-
ducting properties are described by the theory of integer fp, leading to the same critical field.
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Two-dimensional arrays of Josephson junctions have
attracted a great deal of attention recently, both experi-
mentally ' and theoretically. ' They provide a con-
venient model system in which the resistive transition
can be studied without the large randomness inherent in
granular films and, in the presence of a magnetic field
perpendicular to the array, allow the study of transitions
in frustrated XY systems. The system of junctions, in
the large capacitance limit, is modeled by a frustrated
AY model where the degree of frustration f may be tak-
en to be the number of flux quanta tin=he/2e per pla-
quette of area 5, f =HS/ttto. This can be varied experi-
mentally by adjusting the field. The Hamiltonian of the
system, in the phase-only approximation

is periodic in f with period one, except for small varia-
tions in the coupling constant K„„due to flux penetration
of the junction. In Eq. (1), 8„ is the phase of the super-
conducting grain located at r, 4„„=(2tr/pp) f„" A dl, and
the sum is over nearest neighbors only.

Although a regular array minimizes the effects of dis-
order, some is inevitably present and should be taken
into account. ' ' Two kinds of disorder can be present:
random plaquette areas and positional disorder. " The
former is realized when the superconducting grains have
random sizes and the external field is sufficiently low to
permit a Meissner effect in an individual grain so that
the fluxes are independent random variables. This type
of disorder leads to the destruction of superconductivity
for dimensions d (4 and in 0 =2 to a correlation length
g —I/H. This does not mean that experimentally there
will be no superconductivity because of finite-size effects
and vortex pinning by disorder. ' In the latter case, po-
sitional disorder only, which should be realized with a
uniform grain size or H & H,~, the lower critical field for
an individual grain, quasi-long-range phase coherence
and hence superconductivity is found in d =2 for a range
of temperatures T & T & T+ for su%ciently low fields.

Recent experiments on proximity-coupled arrays with
deliberate positional disorder are consistent with the
theoretical predictions'' for integer values of fo, the
average number of flux quanta per plaquette. The max-
imum fiel for which superconductivity is possible is pre-
dicted to be f,d ~ I/(32tr) 't where the probability dis-
tribution of the grain positions is P(u) ee exp( —u„/2A ),
where u, is the displacement of a grain from its average
position r. The inequality is due to small corrections due
to finite fugacity effects. Agreement between theory and
experiment is obtained when one extrapolates the experi-
mental data for fo=n+p/q to large values of q since
resistance measurements for fo =n probe length scales of
the order of a lattice spacing ao, and for fo(q) =n +p q/

length scales of order qao. The theoretical prediction is
for infinite length scales so such an extrapolation is
necessary. However, this makes sense only if the
theoretical critical value f, (q) is independent of q, which
is counterintuitive because of effects which may be im-
portant for q & 1, such as domain walls, fractional
charges, etc. The only reason why such a hypothesis
could be true is that a finite amount of positional disor-
der ensures that such objects are decoupled from integer
valued charges (vortices) which unbind first. These cor-
respond to isolated defects in the superlattice ground

state. ' ' If such a scenario is correct, then the break-
down of superconductivity is governed by the same
mechanism as for fo

=n.

In this Letter, we argue on the basis of a specific mod-
el, that positional disorder does, in fact, decouple the in-
teger charges from the other excitations at least for
fo=n+ —,

' . Although we have not been able to demon-
strate it, we believe that this is also true for other ration-
al values of fo. The physics behind this surprising effect
relies on two facts. First, the pure system has a Z2 sym-
metry as well as the usual U(1) symmetry and Ising or-
der can coexist with XY disorder but not vice versa. '

Thus, as temperature is raised, an A Y transition occurs
first followed by an Ising one. The alternative scenario is
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a single transition in which Ising disorder causes A Ydis-
order. The nature of this is not known but the mecha-
nism in the isotropic-junction array is that at corners of
domains of Ising order there are fractional charges
which unbind when the domain walls melt which then
screen the integer charges. The result is a simultaneous
loss of both chiral (Ising) order and superconductivity. '

The second piece of physics is that positional disorder
of the grains aft ects the XY order in a much more
dramatic way than the Ising order. Thus, increasing the
amount of disorder will reduce the XY transition temper-
ature to below that of the Ising and will eventually allow
the double transition scenario. At this stage, the super-
conductivity is controlled only by the integer charges,
thereby mapping the system on to the theory of logarith-
mically interacting charges in a random dipolar back-
ground ' "' which leads to a critical field f,h
~ I/(32m) '~ . When the A Y degrees of freedom disor-
der, the Ising order persists but does not qualitatively
aflect the superconducting transition. The possible phase
diagrams are shown in Fig. 1 and in both cases the rnax-
imum field is the same. '

The calculations leading to these conclusions for
fo=n+ —,

' are summarized in the remainder of this
Letter. One first observes that disorder can be incor-
porated in the phase-only approximation of Eq. (1) via
A,„=A„„+2rrfor,„Summing .over the links rr' sur-
rounding the site R of the dual lattices yields
gA„, =2rrfo and gt„„=6fR/fo. In the case of random
flux per plaquette, Sf& is an independent random vari-
able, and in the case of positional disorder only, the in-

(a) (b)

D, D,

FIG. 1. Possible phase diagrams for a Josephson-junction
array with fp n=+ —, as a function of disorder D =Afo S, C.,
and D denote the chirally ordered superconducting, chirally or-
dered normal, and disordered phases, respectively. In (a) two
separate transitions occur and in (b) a single transition occurs
when h, =0. In both cases phase coherence is possible only for
D ~ (327r) '

dependent random variables are u„. In the latter case

r,„=z (r —r') x (u„+u„)/2ao . (2)

The strategy is to convert Eq. (1) into a Coulomb-gas
representation. It is known that for the fo=n+ —,

' model
without disorder, the ground state is an antiferromagnet-
ic arrangement of ~

2 charges on the dual lattice and
that the lowest energy excitations are walls separating
the two degenerate ground states, ~ 4 charges at
domain wall corners and isolated regions of unit excess
charges interacting logarithmically. The Coulomb-gas
Hamiltonian can be written in terms of Ising variables
SR = + 1 and charges Q„=g, S(r+ e)/8 with e being
the vectors from the center of a plaquette to the four
corners, '

PH =L
~ g SgSR'+ 2x KQQ„G(r —r') Q„+LzgSz 6fz + 4rr KQQ„G(r —R)Sf+,
(RR') rr' R rR

(3)

where G(r) is the Coulomb-gas interaction. The Ising variables, which are just twice the charge at the site, are coupled
antiferrornagnetically by a short-range interaction represented by a nearest-neighbor coupling L& and to the random
Sf' by another short-range interaction represented by a local coupling L2. Note that in an array, there is no particular
reason why L~ and L2 should be related in any simple way to the coefficient E of the long-range part. This is because
they depend crucially on the short-range parts of the interactions between the original charges of the model in contrast
to the corner and excess integer charges.

In the case where 6fR, the deviation of the flux, is an independent random variable it is clear that Sf~ acts like a ran-
dom magnetic field on the Ising variables and like a random charge on the corner and excess charges. This will then
cause loss of both chiral order and superconductivity for any disorder. '"

In the absence of randomness in the flux, all that is left is positional disorder and the last two terms describing the
disorder in the Hamiltonian of Eq. (3) become

pHd;, =Lzfpgr '(Sp S~')+4m Kfpg gr 'Q„[G(R I'") R(R' r )],
(rr') (rr') r" (4)

where the bond (RR') on the dual lattice cuts the bond (rr') on the original with R to the left and R' to the right of (rr').
Using Eq. (2), it is easy to show that the first term of Eq. (4) corresponds to a local coupling of the displacement u„ to a
domain wall. This is equivalent to random bond disorder. ' The last term corresponds to the coupling of the charges Q
to a random dipole background. One expects that the Ising variables SR are much less aAected by the random bond
disorder than are the integer charges which correspond to small domains with unit of excess charge. These are not at-
tached to domain walls but interact logarithmically with each other and with the random dipole background. At suf-
ficiently large disorder, the transition bifurcates as discussed earlier leading to our claimed result.
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This last part of the argument is somewhat weak since we have been unable to justify it by actual calculation on this
model. However, a related model derived from a Ginzburg-Landau expansion of the original one is in the same univer-
sality class ' and has the same phase diagram in the absence of disorder which supports these conclusions. In the
present case, a similar expansion about the most strongly Iluctuating modes N; =

i +; i e ' leads to an effective Hamil-
tonian of the form

2

pH = Kg g cos(p;„p;„' 2ttf pt„„')+gg cos(pl„
(rr')i =1 (rr')

Note that all these terms are allowed by symmetry.
The last term reflects the existence of domain walls. One
can construct a Coulomb-gas representation and one
finds, as expected, that the coupling between the two
phases Pi and p2 is very relevant. The h ~ strong
coupling limit implies that p2, =pi„+ttr„, with z„=0,1.
The action can now be written as (cr, =2r, —1)

pH = —Kg cos(p„—p„—2ttf pt,„)(1+cr„cr„)
(rr')

(6)

From Eq. (6) it is clear that the system will be com-
pletely disordered when Ising order is destroyed. The
system breaks up into finite domains of Ising order and,
since there is no coupling of p across domain walls, phase
coherence is also lost by a transition of unknown type.
The loss of Ising order is controlled by K —g and the XY
transition by E so that even when there is no disorder
(Afp =0), a single transition will occur for g )g, and a
double one for g(g, with the AY occurring first. '

When g«0, it is clear that the Ising order will persist
with XY disorder. Now imagine that the system has Is-
ing order so that p is controlled by an eA'ective action

pH tt= Kgcos(p„p„' 2ttfpt „'),
with K=K(I+(a) ). Using standard methods, "' one
can construct recursion relations for E and the vortex
fugacity y. These show that there is a range of K for
which y is irrelevant which implies phase coherence;

dy/dl =(2 —ttK4tt 6 fpK )y.
From Eq. (7) one sees that tray(hfp) lies in the

range 2 & tray(hfp) & 4, the lower value for hfp=0
and the larger for the upper bound on the critical field

df, = I/(32tt) 't . A reentrant transition is also predict-
ed. '" The actual critical field will be somewhat less
than this. ' Since the final disordering temperature de-
pends on both K and g, it is easy to imagine a situation
in which Kt') K~@(0) but Kf &K~y(hfp) with fp &f, .
In such a case, the transition will be single for small fp
but splits for larger fp. The final transition will be that
of a weak random bond Ising ferromagnet' with specific
heat C —lnlnt. Although not conclusive, Monte Carlo
data' are consistent with these ideas since the observed
specific heat peak is at a fp-independent temperature
and, as fp increases, just fades away. Better statistics
are needed to see any splitting.

In general, to describe the AY transition in the double

—pq„—p i „+pq„) —hg cos2 (tt 1„—02, ) . (5)

region, we should imagine first rescaling up to the Ising
correlation length gt so that the upper bound will be
&(gt)f, = I/(32tt)' . We have checked the above
scenario from the Coulomb-gas representation of Eq. (5)
and the small fugacity recursion relations which lead to
the same picture. These also show that 3, does not re-
scale since it always appears in the combination
K'=4tr 5 fpK which is preserved under rescaling.
Hence, f, for the frustrated array is, to within small
corrections, the same as in the unfrustrated case.

One may object to the conclusions about an array
based on the A'Y-Ising system of Eq. (6) which does not
contain domain-wall corner charges. This will make no
difference in the double transition region since at the XY
transition there are no domain walls. Even in the origi-
nal model it is physically very plausible that the disorder
will cause a dramatic reduction in T, for the AYpart but
not much for the Ising part, thus implying a splitting of
the single transition into two. The single transition may
be diff'erent because of the diferent mechanisms by
which loss of Ising order causes simultaneous loss of XY
order. The two models have Ginzburg-Landau expan-
sions which diAer only by irrelevant operators. Monte
Carlo simulations show that they have the same topology
of phase diagram and the only place where we used the
modified model was to argue that the single transition
splits.

It is believed that the fp =n+ —,
' junction array in the

absence of disorder lies very close to the bifurcation
point' so that even small disorder well below its critical
value will induce the bifurcation. Therefore the estimate
f,A=i/(32tr)'t should be rather good for both integer
an half integer fp. Similar considerations very likely
hold for fp=n+p/q but this is just speculation. The
considerations of this Letter also have implications for
the dynamics of arrays at fp= —,

'
in that the crossover

from inductive to resistive behavior may well be de-
scribed by the dynamic theory of the unfrustrated case,
which seems to be the case. '
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