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Starting directly from the microscopic Hamiltonian, we derive a field-theory model for the fractional
quantum Hall efI'ect. By considering an approximate coarse-grained version of the same model, we con-
struct a Landau-Ginzburg theory similar to that of Girvin. The partition function of the model exhibits
cusps as a function of density and the Hall conductance is quantized at filling factors v=(2k —1)
with k an arbitrary integer. At these fractions the ground state is incompressible, and the quasiparticles
and quasiholes have fractional charge and obey fractional statistics. Finally, we show that the collective
density fluctuations are massive.

PACS numbers: 73.50.Jt

Despite the successes of the microscopic theories' of
the fractional quantum Hall effect (FQHE), it is still
important to develop an effective-field-theory model
analogous to the Landau-Ginzburg theory of supercon-
ductivity. An important step in this direction was taken
by Girvin and by Girvin and MacDonald, who pro-
posed a field-theory model, containing a complex scalar
field p coupled to a vector field (ao, a) with a Chern-
Simons action (or topological mass term). This model
exhibits vortex solutions with finite energy and fractional
charge which can be identified with Laughlin s quasipar-
ticles and quasiholes. The amplitude fluctuations of the

p field are massive and are identified with the density-
fluctuation modes of the single mode approximation.
There is, however, no explanation for why the Hall con-
ductance is quantized at certain specific fractional
values, and in Ref. 6 it is also argued that the phase-
fluctuation modes remain massless, contrary to the belief
(based on the microscopic models) that all elementary
excitations above the ground state have a finite gap, cor-
responding to an incompressible quantum liquid. Des-
pite this, the model in Refs. 5 and 6 provides an impor-
tant step towards a complete macroscopic description.

In this Letter, we derive a related model directly from
the microscopic Hamiltonian, and demonstrate that it
explains almost all known aspects of the FQHE. The
coefficient of the Chem-Simons term in our case is deter-
mined by demanding that the elementary quanta of the p
field obey Fermi statistics, and the model exhibits cusps
in the partition function at densities n =ntt/(2k —1)
(where ntt is the density of states in the lowest Landau
level) corresponding to uniform solutions. For densities
near an odd-integer filling fraction, the homogeneous
state has an energy —8

~
8n ~. In fact, the lowest-lying

charged excitations involve a nonuniform charge density;
they are spatially localized vortices with the same charge
and statistics as the quasiparticles in Laughlin s ap-
proach. ' ' We also show that the amplitude fluctua-
tion of the p field has a gap and can be identified with

the collective density fluctuations ' while the phase fluc-
tuation of the p field, or the Goldstone boson, is "eaten"
by the vector field (ao, a) as a result of the Anderson-
Higgs mechanism and disappears entirely from the spec-
trum.

We start from the following second-quantized many-
body Hamiltonian

1 00= d rttt*(r) [—iV —eA(r) —ea(r)] +eA (r) p(r)+ —,
' „d rd r'p*(r)p*(r')V(r —r')p(r)p(r'),

where

a'(r) = e'~ d r'
z

p*(r')p(r'),
ze " r —r' (2)

and where we have set 6 =c =1. This Hamiltonian de-
scribes a system of identical particles with mass rn which
are created by the complex field operator p. These parti-
cles interact via a two-dimensional gauge potential a,
and a two-body potential V. They are also coupled to an
external electromagnetic field 2". From (2) it is clear

that a is nothing but the "statistical" gauge potential
employed in Refs. 11 and 12. Thus, if we take the p field
to be bosonic, the above Hamiltonian describes "anyons"
obeying 0 statistics (i.e., the wave function changes by a
phase 8 under the interchange of particles). For 0=(2k
—1)tr with k an arbitrary integer, this is simply the
Hamiltonian for spin-polarized electrons in an external
electromagnetic field interacting via the two-body poten-
tial V(r).
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From (2) we immediately get the following expression
for the "statistical" gauge field b

(3)
which corresponds to associating 0/tt=s units of fiux to
each particle. Changing between different k's corre-
sponds to singular gauge transformations.

We can incorporate the constraint (3) by means of a
Lagrange multiplier field ao, and we add a chemical po-
tential p, which leads to the following coherent-state
path-integral representation for the partition function:

Z[A" ] =„[dp][da; 1[dap]e' (4)

where a;T is a transverse gauge field (i.e., satisfying
8'a; =0), and S =fdt dr X with

—ap[(e /20)e' 6;a~ +ep*p] . (5)

The term —a in this expression is nothing but the
Chem-Simons action in the radiation gauge. ' ' The
usual form of the Chem-Simons term can be obtained by
reintroducing the (infinite) gauge volume (i.e., by revers-
ing the usual Faddeev-Popov gauge fixing procedure' ).
We want to emphasize this rather interesting result.
Several authors have pointed out that the excitations of
two-dimensional field theories with Chem-Simon terms
exhibit fractional statistics, and our derivation starting
from the anyon formulation of Wilczek clearly demon-
strates this. Also note that the size of the topological
mass term is the one obtained both in our previous
analysis of topologically massive (2+ 1)-dimensional
QED, ' and in the work of Semenoff. ' ' So far we
have made no approximations, other than those involving
the intrinsic ambiguities of the coherent-state path in-
tegral itself.

In order to apply mean-field theory, we must first in-
tegrate out the short-distance Iluctuations of the p(r)
field to obtain an effective action which describes the
physics at distance scales larger than the magnetic
length. We are currently engaged in carrying out such a
calculation. For now, we make a simple Ansatz which
we think is valid in the quantum Hall regime: The
effective action is of the same form as the microscopic
action, but with a renormalized stiffness constant K re-
placing the bare mass 1/m, and an effective interaction
strength X replacing the nonlocal interaction V(r ).
Since the Chem-Simons term embodies the statistics of
the bare particles, we do not expect it to renormalize.
Higher-order derivative terms in a„, such as f„„f"',
which are probably generated upon coarse graining,
should not aff'ect the long-distance behavior of the theory
since the Chem-Simons term involves only one derivative
and renders the a„ field massive. ' The resulting parti-

tion function in this approximation is of the form

with

i(s~[p, a&,A&[+s, [a+1 )
ap

X, =4ge'J(2a 6;a~ —a; Spa~) —(e /48)e"' a„8~
(7)

X~=[[*[irip —e(Ap+ap)]|t

BS
J =~A

6S~ 6S,=+ = e' (Bpaj —B~ap), (9)
6a; Ba; 20

and p =2kn, where n is the density.
This action is similar to the one introduced by Girvin.

There are some differences in that we have a kp term
for the scalar field, and we have also incorporated time
dependence in the action. The essential difference, how-

ever, is that Girvin s Chem-Simons action is for the sum
of both the statistical gauge field and the real external
electromagnetic field, while in our case, only the statisti-
cal gauge field appears in the Chem-Simons term. In
Girvin's case, the partition function corresponding to (4)
is independent of the external electromagnetic field, and
therefore cannot be used to derive the fractional quan-
tum Hall conductance. Furthermore, the vortex does not
carry charge with respect to the real U(1) electromag-
netic gauge group. In deriving (8) we have assumed that
V(r) is short ranged; if it is long ranged the expression
can be generalized to include a renormalized interaction
V(r) which will be equal to V(r) at long distances. In
the spirit of the conventional Landau-Ginzburg theory,
we ignore terms with higher powers of p and higher
derivatives that are generated by the coarse-graining
procedure, and we treat K and X as phenomenological pa-
rameters. This completes the derivation of our model;
we now proceed to demonstrate that this effective field
theory correctly describes the phenomena related to the
FQHE.

First consider the case Ap =0 and e'~ a,~, = —a
=const. It is immediately clear that S will be mini-
mized by the trivial constant solution p= Jn, a= —A,
a0=0. Since the statistical gauge field is related to the
density via (3), this solution exists only for
v=n/ng =x/8=1/(2k —1). This does not necessarily
mean that there is a solution only for the particular frac-
tion corresponding to the 0 chosen in the Lagrangian,
since the different choices of k are connected via singular
gauge transformations which induce an r-dependent
phase in p.

To calculate the Hall conductance, we apply an exter-
nal scalar potential Ap with 8;Ap= E;, in addition to-
the vector potential e' 6;A~ = B. The observable—
(gauge invariant) current is given by
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61nZ

I A 0~Ai

6'lnZ

~+i Ao =0 A

e
2g H

e'JEJ =~'JEJ (I I)

and since B=+(2k —I), this demonstrates that the Hall
conductance is quantized in odd fractions of e /h.

Let us now analyze what happens when we move away
from the odd-integer filling fractions. Since the b field is

locked at eb =s2xn, where now n =n~+ Bn, the particles
will feel a net field e 8b=e(b —B)'=s2+Bn Ea.ch parti-
cle (or hole) will acquire a cyclotron energy =xe8b/2,
which implies an energy density

8 =(2k —I)xeB I Sn I K. (i2)

For large 8 it is thus natural to assume that by moving

away from the good filling fractions one creates localized
density disturbances. As we shall see, our model exhibits
such quasiparticle and quasihole excitations in the form
of vortices similar to those found in Refs. 1, 2, and 5.

From the equation of motion derived from (6)-(8),
one easily finds that at n =ruing/B there are static, non-

uniform, finite-energy vortex solutions. If (r,p) are po-
1ar coordinates with the center of the vortex at r =0, the
r ~ behavior of the solution is

y(r, p) =Jne —'~,

a(r, p) =+ j/er, (i4)

and ao(r, p) =0, corresponding to one unit of statistical
flux per vortex. The equation of motion for a implies

BS~ BS,
6A p Hap Sap 20

and so the total charge carried by the vortex is

q'= d xj = &&a dr=+ —e=+..0 e 2 Z e (i6)204 0 2k —1

These field configurations can thus be identified as the
fractionally charged quasiparticle and quasiholes above
the ground state. According to the results of Refs.
10-12, 17, and 18, this implies that the quasiparticles
obey fractional statistics with Bi =qi@i/2=+/(2k —I),
where %i =2~/e is the Aux of the vortex. Note that since
p(r) must vanish at the center of the vortex, there is

necessarily a difference in the profile and creation ener-
gies of the quasiparticles and quasiholes. (This also il-

where we used the equation of motion 6S/6a; =0. Thus,

2

&j') =— [dada ] e"(8 a —6 a )e' ""'"'"' '
Z" " 2O

(10)

By shifting the integration variable ap= Ap+ap, and

expanding to linear order in the electric field, we find

that the induced current is

lustrates the intrinsic problems with the Landau-Ginz-
burg approach at distances of the order of the magnetic
length, since the true quasiparticle density certainly does
not vanish in the core. )

We have thus shown that the vortices in our model
have the same charge and statistics as the quasiparticles
in Laughlin's approach. ' ' The presence of these exci-
tations naturally leads to the so-called hierarchy
scheme, which has been proposed to explain the
quantization of the Hall conductance at fractions other
than I/(2k —I ).

Finally let us turn to the collective excitations. As a
result of the symmetry-breaking potential in I.&, the p
fields acquire a nonvanishing vacuum expectation value

I(p) I
=Wn. The p field can thus be parametrized by

y(x) = [go+ 8y(x) )e""'"', a(x) =Sa(x) +Vii(x), and

ao(x) =Dao(x) —Boil(x), describing the amplitude and

phase fluctuations about the classical vacuum. We see
that the phase Auctuation q{x) is "gauged away" in ac-
cordance with the standard Anderson-Higgs mechanism.
Since the statistical gauge field is nondynamical, there is

no propagating mode (massive or not) corresponding to
phase fluctuations. This reflects that there is a unique
ground-state in the quantum Hall effect and, we believe,
implies that there will be no Josephson-type effects.
Only the amplitude Auctuation remains, and by expand-

ing the Lagrangian, up to terms quadratic in 8p, 8a, and

Sap, about the constant solution, we find the following
dispersion relation:

ro(q) ' = (exB) '+ —,
' xq'(xq '+8XPO) .

Note that the mass of the amplitude mode is B, and-
for negative X, the dispersion curve has the same shape as
that derived in Refs. 7 and 8. Note that even for nega-
tive X, as long as I k I/x is sufficiently small, the quasi-
particle creation energy is positive, and the Hamiltonian
is bounded from below.

In conclusion, we have derived a field theory for the
FQHE directly from the microscopic Hamiltonian, and
find that a coarse-grained version of this theory describes
almost all the known phenomenology of the FQHE in-

cluding incompressibility, fractional Hall conductance
with odd denominators, and the fractional charge and
statistics of the quasiparticles. It is to be warned, howev-

er, that this coarse-grained theory certainly makes errors
on the magnetic length scale, and it treats the statistical
gauge field a within mean-field theory; i.e., the particles
feel the b field which produces the statistics, whereas in

fact the exact a is pure gauge. Despite these shortcom-
ings, we believe that the long-wavelength properties of
the quantum-Hall system are correctly reproduced by
this Landau-Ginzberg theory. We note that the same
physical idea, i.e., that the long-wavelength effects of the
physical magnetic field are canceled by the statistical
field, is the basic result of the cooperative-ring-exchange
theory ' of the quantum Hall effect, and of a mean-field
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theory recently introduced by Laughlin. ' There are
some similarities between the present results and some
independent recent work of Read.
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