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Theory of Ordered Phases in a System of Parallel Hard Spherocylinders

Mark P. Taylor, ' Reinhard Hentschke, ' and Judith Herzfeld '

' Department of Chemistry, Brandeis University, Waltham, Massachusetts 02254-9l l0
Department of Physics, Brandeis Unit. ersily, Waltham, Massachusetts 02254-9ll0

(Received 28 October 1988)

Recent Monte Carlo studies have demonstrated the existence of positionally ordered phases in systems
of monodisperse, parallel hard spherocylinders. We present an excluded-volume theory of this system
which utilizes a scaled-particle treatment of dimensions possessing full translational freedom combined
with a simple cell model for positionally ordered dimensions. The calculated phase diagram is in excel-
lent qualitative agreement with the Monte Carlo results, exhibiting regions of nematic, smectic, colum-
nar, and crystalline stability.
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Explanations for the order exhibited by liquid crystals
have usually followed two main schools of thought. On-
sager originally demonstrated that excluded volume
alone is sufhcient to induce the orientational ordering of
anisotropic hard particles. ' Qn the other hand, Maier
and Saupe have emphasized long-range anisotropic in-

teractions as the basis of nematic alignment. The latter
interactions have also been used to explain the existence
of smectic order. However, Monte Carlo experiments
have shown that excluded volume alone is sufhcient to in-
duce positional order, as found for the freezing of hard
spheres, the freezing of hard ellipsoids, the smectic,
columnar, and crystalline ordering of parallel hard
spherocylinders, and the smectic ordering of orienta-
tionally unconstrained hard spherocylinders. In addi-
tion, density-functional calculations have confirmed the
smectic phase in the spherocylinder systems. ' Such
complex phase behavior of hard-particle systems is at
first quite surprising. However, Wen and Meyer have
pointed out that the entropic losses inherent in smectic
ordering are more than compensated by the concomitant
reduction in the excluded volume. This type of argu-
ment can also be applied to the columnar and crystalline
phases.

In this Letter, we present a theory for parallel hard
spherocylinders using a scaled-particle calculation to
treat dimensions possessing full translational freedom,
combined with a simple ceil model to describe the posi-
tionally ordered dimensions. This approach yields a
phase diagram remarkably similar to that obtained from
Monte Carlo calculations. This includes stable colum-
nar and crystalline ordering which has not been de-
scribed by density-functional theory. Our predicted
smectic layer spacing at the nematic-smectic crossover is
almost identical to that reported in the Monte Carlo
study. The single significant limitation to our model is
that all transitions are required to be discontinuous. As
a consequence, the second-order nematic-smectic transi-
tion demonstrated by the Monte Carlo study is here
found to be first order.

We consider a closed system of volume V containing N
parallel hard spherocylinders of diameter D and cylinder
length L (particle volume bo=ttD /6+ttD L/4). When
the axial ratio L/D=0 this reduces to a hard-sphere sys-
tem. The series of possible positionally ordered phases in
the parallel hard-rod system (smectic, columnar, crystal-
line) can be generated by a sequential reduction in the
degrees of full translational freedom available to the sys-
tem. Such restrictions on the system's translational free-
dom impose severe entropic losses, making the stability
of such ordered phases seem unlikely. However, these
entropic losses can be compensated for by a reduction in
the excluded volume between particles in the ordered
phase and the interplay of these two effects determines
the phase behavior of the system.

In this model, the periodicity of the density in the posi-
tionally ordered phases is approximated by restricting
the particles in the positionally ordered dimensions to
discrete compartments. We also require that these com-
partments accommodate no more than one particle in the
ordered dimension. Thus for a smectic phase, particles
may take any position within a layer, but may not double
up in the layer or penetrate an adjacent layer. For a
columnar phase, particles may take any position within a
tube, but may not pass each other along the tube or
penetrate an adjacent tube. And for a crystalline phase,
particles may take any position within a ceil, but may
not share the cell with another particle or penetrate an
adjacent cell. Compartmentalizing the particles in this
fashion allows us to separate the contributions of the or-
dered and disordered dimensions to the free energy and
to use simple rules for the statistics of placing the centers
of the particles in these diA'erent dimensions. In the 30
ordered dimensions, each particle is alone in a (30) di-
rnensional box and the center of the particle has a well
defined set of allowed positions that keep the particle
within the box. In the d disordered dimensions, the posi-
tions of the centers of the particles are constrained only
by excluded-volume interactions between the particles
and the behavior is that of a d-dimensional Quid of d-

800



VOLUME 62, NUMBER 7 PHYSICAL REVIEW LETTERS 13 FEBRUARY 1989

dimensional hard particles. In the three disordered di-
mensions of a nematic phase, parallel spherocylinders
behave as a three-dimensional Auid of spherocylinders
with a pair excluded volume V,„=2~D (2/3+L/D).
Analogously, in the two disordered dimensions of a
smectic phase, parallel spherocylinders behave as a two-
dimensional Auid of hard disks of diameter D with a pair
excluded area A„=xD . Similarly, in the one disor-
dered dimension of a columnar phase, parallel sphero-
cylinders behave as a one-dimensional Auid of hard rods
of length L +D with a pair excluded length
L„=2(L+D).

Combining the contributions from the ordered and the
disordered dimensions, the configurational free energy
for a phase with d disordered dimensions can be ex-
pressed as

Fcorlflg Ffluid+ Fcryst
d 30

F3~/" is simply related to the number of positions I 30 ac-
cessible to a given particle in the (3D) ordered dimen-
sions according to the standard statistical formulation
PF3D/N= —lnI 3D where P=I/kgT. For the smectic
phase, particles of length L+D are restricted to close-
packed layers of thickness h,„where 3,, &L+D to ac-
commodate the particle and 6, &2(L+D) so the parti-
cles cannot double up in the layer. Thus I

&
=h,,—(L+D). For the columnar phase, particles of a circu-

lar cross section with diameter D are restricted to close-
packed hexagonal tubes of width 6, (cross-sectional area
J3A, /2), where b,, & D to accommodate the particles
and 6,, ~ 2D so particles cannot pass each other along the
tube. Thus I z

=J3(h, D) /2. For th—e crystalline
phase, the cell represents a hexagonal tube of width 3,„
and length B„capped by hemi-dodecahedrons [cell
volume h„(W2A, +&3e, )/2]. Since the cells are close
packed, the volume of a single cell must be V/N and

where 6„=(2V —42Nd „)/J3N/3. „. Notice that for
spheres (L/D =0) the ce[1 becomes a dodecahedron, and
the theory is identical to the self-consistent free volume

theory. '' Notice also that this single-occupancy cell
theory is governed by the shape of the Wigner-Seitz cell
in the close-packing limit and therefore does not distin-
guish between fcc and hcp packing. The above expres-
sions for I 3D are summarized in Table I.

Fg"' also depends on the characteristic lengths A„h,„
and A„, and the joint optimization of F"""s [Eq. (1)]
relative to these lengths provides the coupling between
the ordered and disordered dimensions. Good expres-
sions for Fy"' can be obtained with scaled-particle
theory. The central quantity of scaled-particle theory is
the reversible work 8'y associated with insertion of an

appropriately scaled particle into a d-dimensional Auid

system. ' For a nematic phase, a spherocylinder of
scaled diameter eD and scaled cylinder length kL is in-
serted into a three-dimensional Auid of parallel sphero-
cylinders of cylinder length L and diameter D. For a
smectic phase, a disk of scaled diameter aD is inserted
into a two-dimensional fluid of disks of diameter D. And
for a columnar phase, a rod of scaled length X(L+D) is
inserted into a one-dimensional Auid of rods of length
L+D. The work function is related to the probability I'p
of successful insertion according to pWq = —InI'q. In
the limit of a vanishingly small scaled particle
(a, k 0), only two-body interactions are involved. I'q

can then be expressed exactly in terms of the pair ex-
cluded volume (V„) and total volume (Vt, t) for the bulk
nematic, the pair excluded area (A,„) and total area
(At $

= V/A, ) for the smectic layer, and the pair exclud-
ed length (L,„) and total length [Lt,t

= V/ (J3A, /2) ] for
the columnar tube. The results are shown in Table I. At
the other extreme of a macroscopically large scaled par-
ticle (a,k~ ~), the work function can also be expressed
exactly in terms of a d-dimensional hydrostatic pressure
Hp resisting the formation of a macroscopic cavity in the
4-dimensional Auid. The premise of scaled-particle
theory is that interpolation between these two exact lim-
its (via an expansion of the work function in terms of the
scaling parameters a, X) provides valid results for the
case of a, k=1.

Following Cotter, ' we expand the scaled-particle
work functions as follows:

TABLE I. Statistical expressions for the d positionally disordered and (3D) positionally ordered dimensions of a system of parallel
hard spherocylinders in four possible phases.

Phase

Nematic

lim (Pg)
a, A, 0

1
—NV, „/Vt, )=1 —p[ —,

' ~D (1+a) + —,
'

AD L(1+a) (1+X)l

Smectic

Columnar

Crystal

1 NA, JA, =1 —pA, [ —, AD —(1+a) 1

1 NLex/Ltot=1 p(J3&c/2)[(L+D)(1+k)l

6, —(L+D)

iX(~, —D) '/2

(a. —D) '[(J2/2) (a. D) + (J3/2) (e.—L)I—
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PW2 '""(a)=cpp+c]pa+( —„' n'D )(PHp)a

PW;"" "(X)=c;,+(L+D)(PH, )X,

(2b)

(2c)

where Hq =H34, and H~ =H3 434, /2. Using the fact
that the expressions for Pd of Table I are exact for
a, k =0, the coefficients in these expansions are taken as

c„,„=(1/m!n!)t) +"(—[nPd)/t) at)")
~

The interpolated d-dimensional work function, PR'd(a, X

=1), and the d-dimensional number density, pd, directly
give the Gibbs free energy PGd""' /N=l pn+dP8'd/N.
Integrating the Gibbs-Duhem relation to obtain an ex-
pression for the pressure Hd, we finally obtain the
configurational Helmholtz free energy for the d-
dimensional Auid

pFd"" /N =pGd"' /N pHd/pd . —

For a given particle volume fraction, vz =Nbp/V, and
spherocylinder axial ratio, L/D, the total free energy
[Eq. (1)] for each phase is minimized to obtain the op-
timal characteristic lengths (A„d„and 6, ) in the or-
dered dimensions. The phase exhibiting the lowest free
energy is then determined to be the globally stable solu-
tion. The crossover from one stable phase to another is
accompanied by a discontinuous change in the pressure
[PH3 (9/3F/r)V)Q T] and chemical potential [Pp
=(8/3F/r)N) v T], characteristic of a first-order phase
transition. The thermodynamic phase boundaries are
computed by simultaneously matching the pressure and
chemical potential between the coexisting phases. The
results of this calculation are shown in Fig. 1.

PW,"' "'"(a,k) =cpp+c~pa+cp~k+c~ ~ak+c2pa

+( —,
' AD'L)(PH3)a ).+( —,

'
rrD )(PH3)a, (2a)

This figure is remarkably similar to the phase diagram
constructed from the extensive Monte Carlo (MC) study
of Ref. 6. Regions of nematic, smectic, columnar, and
crystalline stability all occur in very good correspondence
with the MC phase diagram. The smectic layer spacing
at the nematic-smectic free-energy crossover, shown in
Fig. 2, is found to be in excellent quantitative agreement
with the MC results (i.e., as good as or better than that
obtained with density-functional theory' ). At the
smectic-columnar transition, the scaled smectic layer
spacing and scaled columnar tube width are found to be
essentially independent of spherocylinder axial ratio with
values d, /(L+D) =1.04 and A, /D=1. 06, respectively.

Detailed comparisons can be made between the
features of our phase diagram and the MC phase dia-
gram. For the hard-sphere system (L/D=0), we find a
first-order freezing transition at p* =0.78~ 0.87 (MC
result: p*=0.67~0.73). A stable smectic phase is
first seen for L/D =0.9 at p* =0.68 (MC result:
0.25 (L/D (0.50, p* =0.60). A stable columnar
phase, intervening between the smectic and crystalline
phases, first occurs for L/D =2.5 at p* =0.81 (MC re-
sult: 3.0 (L/D ( 5.0, p* =0.80). The columnar-
crystalline transition moves to higher p* with increasing
L/D until the crystalline phase disappears completely at
L/D=30 (MC result: crystalline phase disappears in
the range 5 (L/D ~ ee). In the limit of L/D~ ~, the
nematic-smectic transition occurs at p* =0.41 0.49
with a smectic layer spacing of 3,, =1.27L at the cross-
over (MC result: p* =0.39, 6, = 1.27L) and the
smectic-columnar transition occurs at p =0.82 0.85
(MC result: p* =0.56). This comparison demonstrates
a fair quantitative agreement between our theory and the
MC study.

DiA'erences between the present results and the MC
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FIG. I. Phase diagram of the parallel-hard-spherocylinder
system as a function of spherocylinder axial ratio (L/D) and
the reduced particle number density [p* =v~/v, ~, where
v,~ =(sr&3/6)(L/D+ —;)/(L/D+42/3) is the spherocylinder
close-packing fractionj. Shaded areas denote regions of phase
coexistence.

FIG. 2. Scaled smectic layer spacing [h,/(L+D)l at the.
nematic-smectic ( ) and smectic-columnar (---) crossovers,
and scaled columnar tube width (6,/D) at the smectic-
columnar crossover ( .) as a function of spherocylinder axial
ratio (L/D)

802



VOLUME 62, NUMBER 7 PHYSICAL REVIEW LETTERS 13 FEBRUARY 1989

results can be attributed to the severity of the positional
ordering imposed by our model. Our strict compartmen-
talization of particles in the ordered dimensions is known
to underestimate the free volume which, in turn, would
be expected to shift transitions to higher densities. Strict
compartmentalization also exaggerates discontinuities at
the transitions. Thus, it is not surprising that our calcu-
lated transitions are systematically shifted to somewhat
higher p* than are found in the MC study and that the
second-order nematic-smectic transition found in the
MC study is predicted to be first order in our model.

The above phase behavior depends on the assumed
packing arrangements of the columnar and crystalline
phases. We have considered other possible geometries
(e.g. , cubic versus hexagonal) but, not surprisingly, we
find that they lead to less stable states.

Scaled-particle theory is known to be exact in one di-
mension and has been shown to be good, even for high
Quid densities, for disks in two dimensions and spheres in
three dimensions. ' We find that replacing the scaled-
particle theory with cruder excluded-volume theories
(Alben, ' Herzfeld' ) leads to very poor results.

We conclude that scaled-particle theory seems to pro-
vide a good description of the fiuid dimensions while
straightforward statistics seem to provide a good approx-
imation of the entropy remaining in the positionally or-
dered dimensions. This approach may prove useful in

describing positionally ordered phases in more complex
liquid-crystalline systems.

We would like to thank R. Oldenbourg for bringing
Ref. 6 to our attention and R. B. Meyer for a critical
reading of the manuscript. This work was supported by
National Institutes of Health Grant No. HL36546; R.H.
was supported by Deutsche Forschungsgemeinschaft.

'L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949).
ZM. Maier and A. Saupe, Z. Naturforsch. A 13, 564 (1958).
3W. L. McMillan, Phys. Rev. A 4, 1238 (1971).
4B. J. Alder and T. E. Wainwright, J. Chem. Phys. 27, 1208

(1957).
5D. Frenkel, B. M. Mulder, and J. P. McTague, Phys. Rev.

Lett. 52, 287 (1984).
A. Stroobants, H. N. W. Lekkerkerker, and D. Frenkel,

Phys. Rev. A 36, 2929 (1987).
7D. Frenkel, H. N. W. Lekkerkerker, and A. Stroobants,

Nature (London) 332, 822 (1988).
SX. Wen and R. B. Meyer, Phys. Rev. Lett. 59, 1325 (1987).
9B. Mulder, Phys. Rev. A 35, 3095 (1987); A. Poniewierski

and R. Holyst, Phys. Rev. Lett. 61, 2461 (1988).
'OA. M. Somoza and P. Tarazona, Phys. Rev. Lett. 61, 2566

(1988).
''B. J. Alder, W. G. Hoover, and D. A. Young, J. Chem.

Phys. 49, 3688 (1968), and references therein.
' E. Helfand, H. L. Frisch, and J. L. Lebowitz, J. Chem.

Phys. 34, 1037 (1961).
'3M. A. Cotter, J. Chem. Phys. 66, 1098 (1977).
'4R. Alben, Mol. Cryst. Liq. Cryst. 13, 193 (1971).
'53. Herzfeld, J. Chem. Phys. 76, 4185 (1982).

803


