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Stieltjes Integral Representation and Effective Diffusivity Bounds for Turbulent Transport
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A Stieltjes integral representation for the eAective diAusivity in turbulent transport is developed. This
formula is valid for all Peclet numbers and yields a rigorous resummation of the divergent perturbation
series in Peclet number provided that all diagrams are computed exactly. Another consequence of the
integral representation is convergent upper and lower bounds on effective diAusivity for all Peclet num-
bers utilizing a prescribed finite number of terms in their perturbation series.

PACS numbers: 47.2S.—c

It is well known that the motion of a diffusive particle
advected by a fluctuating velocity field is equivalent at
large spatial scales and long times to an effective
enhanced diff'usive motion. ' An important physical
quantity in turbulent transport is the effective diff'usivity

coefficient at large Peclet numbers which depends on the
bare particle diA'usivity as well as on the velocity statis-
tics. This quantity can be computed explicitly in very
few cases and approximate procedures such as the direct
interaction approximation and renormalization-group
methods have been applied to compute

effective

diff'usivity coeKcients. In these approximate methods,
formal diagrammatic resummation procedures are need-
ed because the perturbation expansion in powers of Pec-
let number typically has a zero radius of convergence.

Herc we present a new representation formula for the
eA'ective diA'usivity coe%cient which involves the Stieltjes
integral of a probability measure and is valid for all Pec-
let numbers. Below we show that this formula provides a
rigorous justification of the resummation of the divergent
perturbation series provided that all diagrams are com-
puted exactly. In this fashion, the representation formu-
la provides a fundamental basis for the Kraichnan-
Yakhot-Orszag resummation procedures which rely on
additional approximation through a Wilson rule and/or
partial resummation. We also apply the formula to de-
velop rigorous convergent upper and lower bounds for
effective diA'usivity for all Peclet numbers given a finite
number of coeScients in the perturbation expansion.
One special case of these results is the fact that first-
order perturbation theory always provides an upper
bound for eA'ective diffusivity at all Peclet numbers.

The diff'usion equation for the transport of a scalar by
a steady incompressible velocity field is

T +u(x). VT = tcaT.
Bt

Here the velocity field u(x) is a stationary random field

satisfying divu(x) =0 and (u(x)) =0 where brackets in-
dicate ensemble averaging. The Peclet number k, associ-
ated with this transport process, is given by

where the caret denotes Fourier transform; we consider
fIows with finite X. With the nondimensional vector po-
tential 4' satisfying curl%'= —u/tran, and the matrix H
given by H(x) =%'(x) X. , we introduce the random
matrix field E which satisfies

V (I+EH) E(x) =0,
VxE=O,

(E) =I.
For slowly varying initial data with the form T(x,0)
=To(ex) with e((1, the function T(e 'x, e t) ap-
proaches the solution of an eff'ective diA'usive equation
which describes the large time behavior. It is well
known that the eAective diff'usivity tensor is given by
the renormalized diffusivity

tc,tr = tc(I+ (E E) )

where E=E—I is the fluctuating part of E. Following
Golden and Papanicolaou, we utilize the matrix integral
operator I;~, 1 ~i,j ~ 3, which is defined in wave-vector
space as multiplication by the symbol I; l(k) = —k;k~/

~
k

~
and we rewrite the first equation in (2) as the non-

dimensional integral equation

E —xrHE =xrHI.
To derive the Stieltjes representation formula, we first
consider the situation when the vector potential H(x) is
uniformly bounded over all realizations; then the opera-
tor I H defines a bounded linear operator on I. ((.)) that
restricted to the subspace of zero-mean, curl-free fields,
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is skew symmetric. We recall that functions f(A) of a
skew-symmetric operator 4 are expressed through the
resolution of the identity for 2, [R;ij, by the spectral for-
mula,

f(~) =J fb)d~„
By using (3) and the spectral representation of I H as a
skew-symmetric operator, we obtain the representation
formula

t'" ) 'p(dt)
g p 1+F2

Here p (dt ) is a positive matrix-valued measure on
[0,+~) related to the resolution of the identity dR of
I H by

p(dt) =(H'r(d~, ~+d~, ~)rH). (6)

Below we show that trfp(dt) =1. For periodic velocity
fields the formula in (5) was suggested by Battacharya,
Gupta, and Walker. To obtain the representation for-
mula for more general incompressible velocity fields with
the condition that the integral in (1) is finite, we approx-
imate by uniformly bounded fields and pass to the limit.
The representation in (5) remains valid except for the
fact that the representing measure may be substochastic,
i.e. , the measure p satisfies trfp(dt) ~ 1. However, if
the velocity potential has finite fourth moments, the
equality below (6) remains valid. For statistically iso-
tropic u (x), the representation formula is

with v(dt) =trp(dt) a probability measure. We remark
that the operator I H is skew symmetric only because
divv =0. For a slightly compressible velocity field with
divv&0, this operator is no longer skew symmetric and
the representation formula is no longer valid.

Through (6) we compute that the moments of the rep-
resenting measure p(dt) are given in terms of the per-
turbation series for the integral equation in (4) by

I t" 'p(dt) =(—1)'-'(H(I.H)'"-')
dp

for k =1,2, 3, . . . ; with k =1, we obtain trfp(dt) =1.
We restrict the remaining discussion to isotropic velocity
fields. Since the measure v(dt) in (7) is nonnegative, by
expanding (1+X t ) ' and integrating with respect to v,
we conclude that the partial sums, 1++k=i qkX ", with

qi, = —,
' tr(H(I H) " ') are upper bounds on ir, s.().)/ir if

n is odd and lo~er bounds if n is even for all Peclet num-
bers. The upper bound with n =1 yields the result that
first-order perturbation theory provides an upper bound
for eA'ective diA'usivity for all X. These upper and lower
bounds converge to x,tr(X)/ir only for values of X small-
er than the radius of convergence of Pqkz". From (7)

this radius of convergence is R = [lub(suppv)1 '. Thus,
if the representing measure is not a Dirac mass at the
origin, the perturbation series for eAective diAusivity
diverges for suKciently large Peclet numbers; if v has
unbounded support, the radius of convergence is zero.
The work of Kraichnan and Yakhot and Orszag sug-
gests that for velocity fields with Gaussian statistics, the
representing measure for eAective diAusivity has un-
bounded support. Following the work of Milton and
Bergman' on efI'ective properties of composite materi-
als, we propose bounds for K,s(k ) when a finite number
of coeAicients qk, k =1,2, . . . , L from the perturbation
series are known. These bounds are simply the [n, n —1]
and [n, n] Pade approximants for the Stieltjes function
for x,s(X ) from (5). These rational functions of X,
which we denote by tc2+„ i (X ) and vq„(X ), satisfy
x'2„(X ) ~ x,s.(X ) ~ ice+„—i(X ). From general princi-
ples, '" these Pade approximants are known to converge
for every Peclet number to tc,s.(k ) as n ~ if all mo-
ments

~ qt, ~
are finite. Furthermore, x2„(k ) and

~ (k ) give the best-possible bounds for eff'ective
diff'usivity based on the knowledge of qk, 1 ~ k ~ 2n —

1

or 2n. There is a close formal relation between the
rigorous representation formulas derived in (5) and (7)
together with Pade approximations for eA'ective dif-
fusivity and the earlier work of Kraichnan which in-
volves a fictitious decay of probability.

The following realizability question has obvious impor-
tance. Mathematically, every probability measure v(dt)
on [0,~) induces a potential eff'ective diff'usivity function
Ict..ff(k ) by the formula in (7). Can every such function
be realized as the eAective diA'usivity of advective motion
by a physically reasonable incompressible velocity field?
The answer is yes and the discussion is given in detail in
a paper by the present authors. ' In that paper, a varia-
tional principle for eAective diffusivity is also developed
along with more detailed analogies with the theory of
composite materials.
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