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Renormalization of the Statistics Parameter in Three-Dimensional Electrodynamics
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We argue that the P function for the statistics parameter in (2+1)-dimensional electrodynamics is
zero to all orders in perturbation theory beyond one loop. We show that there can be finite radiative
corrections from massless charged scalar fields.
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Gauge theories in (2+1) dimensions have several
features not seen in their (3+1)-dimensional counter-
parts. These center on the possible appearance of the
Chem-Simons three-form in the action ' and are connect-
ed with parity anomalies and exotic charge, angular
momentum, and statistics. Original motivation for
their study was their resemblance to the high-tem-

perature limit of gauge theories in (3+1) dimensions.
More recently, there has been interest in (2+1)-
dimensional electrodynamics in models of certain
condensed-matter phenomena, particularly high-T, su-
perconductors and the quantized Hall eff'ect.

The Euclidean action of scalar electrodynamics with
both Chem-Simons and Maxwell kinetic terms for the
gauge fields is

& =„d'x (D„tlto)*(D„toto)+mo'tito*tlto+i e A a,A,'+ F„,F„'„

where D„=t)„+igoA„This .is a prototype for the
effective field theory of the CP' model discussed in Ref.
9 (see also Ref. 10). The Chem-Simons term gives the p
quanta fractional statistics. (With the Maxwell term
this is only true at large distances. ) The gauge field and
ep have dimension 1 and gp and ep are dimensionless.
This field theory is superrenormalizable with comput-
able, finite physical parameters. There is considerable
interest in a model with only Chem-Simons kinetic
terms. ' It is defined by the limit ep ~ where it is
renormalizable with dimensionless bare coupling
gp ~ ap

~

' and F„,F„, is an irrelevant operator. Since
all physical parameters are not finite in this limit, renor-
malization is required. In Ref. 9 it was argued that the

dimensionless statistics parameter gti/ao can have an in-

teresting renormalization flow. We show in this paper
that this is not the case. When the renormalized mass
m e0, the corresponding P function is zero to all orders
in loop expansion. For the critical case m =0 (although
there is no symmetry which prevents radiative mass gen-
eration, it is natural at a critical point for the scalar to
be massless) we demonstrate that P is zero to two-loop
order and we conjecture that it is zero to all orders. We
also show that, when m =0, gti/tto has finite renormal-
ization in higher loops. With po=Z'i p, A„=Z3i A„,
gp =Z Z3 Z2g, o!p =Z3 Z a, mp =m +6'rn, and

!
the Ward-Takahashi identity Z =Z2 the action is

S = " Zft8„&* B„tit+(m +($m )y*y]+
~ F„,F„,+Z,i e„,gA„B,Ag+ZgA„ttt*i B„tlt+Zg A„A„tlt*tit

Z, is fixed by the requirement that the renormalized Chem-Simons term has coefficient a/4tr. The physical statistics
parameter is g /tt=Z, gti/ao. Propagators, vertices, and counterterms are summarized in Fig. 1. We use eo as a
gauge-invariant cutoA to be taken to ~ at the end of computations. To see that when m & 0, Z receives no contribu-
tions beyond one loop, '' consider the irreducible Euclidean N-photon correlation function for N ~ 4 in the one-loop ap-
proximation I „, „„(pi,. . . ,

—g& pk) shown in Fig. 2. I is symmetric. Radiative corrections to Z, with two or
more loops are one-photon-irreducible graphs obtained either by sewing together all but two legs of I [see Fig. 3(a)),
then finding the term linear in the external momentum and antisymmetric in vector indices of the resulting two-point
function,

8 N —
1

lim e„„Jdp3dp4 I „,q, q p; —p;p3, . . . ,
—g pk %'~, ~ {p,;p4, . . . ),

p p Qpp 3
(3)
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FIG. 1. Progagators and vertices for scalar electrodynamics.
The topological mass is p =aeo/2', eo ~, and y is the
gauge-fixing parameter.

FIG. 3. How H„, is constructed from I . R depends on p
whereas 4' is independent of p.

or by sewing two I s together in all possible (one-photon irreducible) ways [Fig. 3(b)],

lim e„„~ did dqi. . . I „z (p;ll, . . . )I,~ ( p;q&, . . . )%z ~ (p;&i;. . . ;q2
p — 0 Qpp

When m )0, I is analytic at p,"'=0. 4' depends on p where as % does not. The Ward-Takahashi identity is
r

% —
1

0 p Il ~V.—n
pi &i pN 1 s ~ ~ Pk

k

Taking a derivative by p;, setting p; =0, and using analyticity yields

IV —
I

0 —r n ~ ~ ~

pi 'v piV 1) ~ ~ ~ ) y ~ ~ ~ ~ Pk
1

This immediately implies that (4) vanishes. It further implies

(4)

lim I„, (p; —p;. . . )=lim I„, (p;0;. . . ) — r„, (0; —p;. . . ) =0,6
p —0 Bpp p —0 Bpp Bpp

and (3) also vanishes. (This generalizes to other massive matter such as spinor and vector fields. It is also valid at
finite temperature. There the Euclidean momentum vectors have one component the discrete Matsubara frequency
p; =2zk&Tn; with T the temperature, n; an integer, and the other two components continuous variables. For N )4,
Euclidean N-photon functions have unique extensions to functions of complex momenta p; . With massive matter, these
functions are analytic at zero frequency and momentum and the Ward-Takahashi identity also holds. The above

reasoning shows that no two-photon vertex with one
power of derivatives is generated by radiative corrections

3 2 3 beyond one loop at finite temperature. ) Thus, given the
known finite one-loop corrections from both scalars and
spinors, their contributions to the P function for the

+ y ~ ~

FIG. 2. The N-photon correlation function at one-loop order
is the symmetrized sum with all combinations of both three-
and four-point vertices. FIG. 4. One-loop photon self-energy.
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FIG. 5. Two-loop photon self-energy.

statistics parameter is zero.
This leaves the possibility of a nonzero P function

from massless charged fields where the N-point functions
I cannot be assumed analytic at zero external momenta.
The zero mass limit which defines a massless field theory
may not commute with the zero momentum limit which
determines the renormalization of a coupling constant.
However, since the P function is independent of momen-
tum, it will be zero in the massless limit as it is in mas-
sive theory. This will be verified by explicit calculation
to two-loop order in the following. We conjecture that it
holds to all orders. This argument does not exclude
finite renormalizations and we shall find explicit nonzero
finite corrections at two-loop order from massless scalars.
The one-loop correction to the photon two-point function from charged scalars (Fig. 4) is

(c)

2

n„",'(p) =(p'6„,—p„p, )
24m p +4m . p+ arcsin

p 2Q 2 p +4m

~ ]/2

(5)

Although the loop integral is potentially divergent and requires a cutoA at intermediate stages of calculation, the result
is finite. Its antisymmetric part vanishes and when m ) 0 its symmetric part has a local limit (p 6„,—p„p, )
xg /24m Jm which contributes to Z3. Figure 5 depicts two-loop self-energy diagrams. The corresponding integrals
are finite for eo & ~ and by power counting are logarithmically divergent when eo ~. The contributions of Figs.
5(b)-5(e) to (1/2p )e„,iII„,pz cancel immediately upon combining the integrals. Figure 5(a) can be reduced to the
Feynman parameter integral

g4 r 1 1
dx] ' ' ' dx48(1 x~ ' ' ' x4)8~'a "o [(1 —x )

—x 2) (x ( + +x4) —(x3+x4) '] 'i2

p (1 —x) — —x4)(1 —x) —x2)+m (x)+ +x4)(1 —x) —x2)+p n
&ln

m2(x)+ +x4)(1 —x) X)2+—p'n

where p =aeo/2' and

[(1—x (
—x2)(x2+x3) —(x3+x4)x3]0 = [(1 —x ~

—x 2) (x2+ x 3) —(x3+x4) ']—
(1 x2 x3)(x~+ +x4) —(x3+x4)'

Figure 5(f) reduces to

g4 X]X2
dx i dx2 8(1 —x i

—x2)
gx2a ' [(1 —x )

—x2) (x (+x2) —x (X2] 'i'

p'(I —x) —x2)(1 —x))+m'(I —X))(x(+X2)+p'n
x ln

m'(1 —X()(x)+X2)+p'&
x2 (1 x& x2)

n =x2(1 —x) —x2)—
(1 —x] —x2)(x /+X2) +x/X2

If we keep rn &0 and put p =0, these two contributions cancel for all values of p &0, consistent with the no-
renormalization argument above. On the other hand, if we first put m =0 and then p /p large (since eo ~), the
divergent leading terms proportional to In(p /p ) cancel. Therefore, as expected, there is no infinite contribution to Z, .
After some standard manipulations, ' the finite parts are

4 ~ ]/2

J dp dX, dx dy 0(1 —y —p)
8x a [1 —~+~p(1 —p) ] '"

p(1 —p) (1 —k) (1 —kp)
[(1 —kp)(px+y) —Xy ][1—k+Ap(1 —p)] —[p(1 —Xp)x+(1 —X)y] Szr a

where the approximate result is obtained numerically.
To couple spinors we add f yJ[y„(i rl„—igoA„) +Mo]yo to (1). Generalization of the arguments above shows that
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there are no contributions to Z beyond one loop at ei-
ther zero or finite temperature when M~O. At one loop,
the correction is known at T=0 and can be obtained at
T~O as

Fisica Nucleare. Y.-S.W. is supported by U.S. National
Science Foundation Grant No. PHY-8706501.

lim
2 E& gfI& pg = tanh

1 ()) g M
p -02p' " " 8& kaT

When M=O the one-loop correction vanishes but there
could be finite corrections from higher loops.

Equation (5) indicates a radiatively generated
Maxwell term at one-loop (and higher) order. We deter-
mine Z3 so that the renormalized Maxwell term has
coefficient 1/4e . Even when the bare action has only a
Chem-Simons term, a Maxwell term is generated in the
erat'ective action. In that case it is possible to resume per-
turbation theory using the renormalized Maxwell term in

the Feynman rules which are then superrenormalizable.
The present analysis also applies to the singular case
where 1/e =0 which remains marginally renormaliz-
able. In summary, for scalars when m =0,
Z, = 1+2.74g /2tra +. . . , Z3=eo/e +. . . ; when

m e0, Z, =l, Z3 =et'/e eog /24—trdm +. . . . For
spinors when M =0, 6Z, = (finite corrections from) two loops), Z3 is affected at two and higher loops;
when M WO, 6Z = —(g /2a) tanh(M/kttT), 6Z3
= —

etang /12trdM +. . . from one- and higher-loop
vacuum polarization. In the massive theories we have Z
exactly. In both cases there are no infinite corrections to
ao and the corresponding P function vanishes. However,
there is finite renormalization from massless particles in

higher loops and from massive spinors at one loop.
There can be an infinite renormalization from charged
massive vectors at one loop. ' The latter [as well as the
CP' model to which (1) is approximate] is a nonrenor-
malizable theory and the perturbative expansion is un-
reliable. Also, our results for renormalizable theories are
perturbative and would be improved by demonstrating
Borel summability of the perturbation series. Finally, we
speculate on hysteresis where we vary parameters, i.e., T,I, e of scalar electrodynamics. The statistics parame-
ter is unaffected if we avoid critical points. If we go to a
critical point the statistics parameter gets finite comput-
able corrections. We then leave the critical point with
renormalized fractional statistics.

G.W.S. is supported by the Natural Sciences and En-
gineering Research Council of Canada. P.S. is support-
ed by U.S. Department of Energy Grant No.
DE/87/AC02/86ER40284 and the Istituto Nazionale di

' Permanent address: Dipartimento di Fisica, Universita di
Perugia, and INFN Sezione di Perugia, Via Elce di Sotto 10,
06100 Perugia, Italy.

'W. Siegel, Nucl. Phys. B156, 135 (1979); J. Schonfeld,
Nucl. Phys. B185, 157 (1981); R. Jackiw and S. Templeton,
Phys. Rev. D 4, 2291 (1981);S. Deser, R. Jackiw, and S. Tem-
pleton, Phys. Rev. Lett. 48, 975 (1982), and Ann. Phys. (N. Y.)
140, 372 (1982).

2A. Niemi and G. Semenoff', Phys. Rev. Lett. 51, 2077
(1983), and Phys. Rep. 135, 3 (1987); N. Redlich, Phys. Rev.
D 29, 2366 (1984).

3M. Paranjape, Phys. Rev. Lett. 55, 3290 (1985); G.
SemenoA and R. Wijerardhanna, Phys. Lett. B 184, 397
(1987).

4G. SemenoA, Phys. Rev. Lett. 61, 517 (1988); J. Leinaas
and J. Myrlheim, Nuovo Cimento B37, 1 (1977); Y.-S. Wu,
Phys. Rev. Lett. 52, 2102, 111 (1984); F. Wilczek, Phys. Rev.
Lett. 49, 957 (1982); F. Wilczek and A. Zee, Phys. Rev. Lett.
51, 2250 (1983), and 52, 2111 (1984); Y.-S. Wu and A. Zee,
Phys. Lett. 147B, 325 (1984); D. Arovas, R. SchrieA'er, F.
Wilczek, and A. Zee, Nucl. Phys. B251 FS13, 117 (1985); G.
SemenoA and P. Sodano, Phys. Rev. Lett. 57, 1195 (1986).

5P. Anderson, Science 235, 1196 (1986); S. Kivelson, D.
Rokshar, and J. Sethna, Phys. Rev. B 35, 8865 (1987); R.
SchrieAer, X. Wen, and S. Zhang, Phys. Rev. Lett. 60, 944
(1988).

6X. Wen and A. Zee, Phys. Rev. Lett. 61, 1025 (1988); D.
Haldane, Phys. Rev. Lett. 61, 1029 (1988).

I. Dzyaloshinski, A. Polyakov, and P. Wiegmann, Phys.
Lett. A 127, 112 (1988); P. Wiegmann, Phys. Rev. Lett. 60,
821 (1988); A. Polyakov, Mod. Phys. Lett. A3, 325 (1988).

8S. Zhang, H. Hansson, and S. Kivelson, Santa Barbara re-
port, 1988 (to be published); S. Girvin, in The Quantum Hall
Effect, edited by R. Prange and S. Girvin (Springer-Verlag,
Berlin, 1986), and Chap. 10, references therein.

A. Polyakov, in Fields Strings and Critical Phenomena, Les
Houches, France, 1988 (to be published); D. Deser and N.
Redlich, Phys. Rev. Lett. 61, 1541 (1988).

'oA. Polyakov, Gauge Fields and Strings (Harwood, London,
1987).
''S. Coleman and B. Hill, Phys. Lett. 159B, 184 (1985); Y.

Kao and M. Suzuki, Phys. Rev. D 31, 2137 (1985); M. Bern-
stein and T. Lee, Phys. Rev. D 32, 1020 (1985).

'~Y. B. Dai and Y.-S. Wu, Scientia Sinica 19, 65 (1976).
' C. Hagen, P. Panigrahi, and S. Ramaswamy, Phys. Rev.

Lett. 61, 389 (1988).

718


