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Thermodynamics of the Classical Massive-Thirring-Sine-Gordon Model
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The proper classical limit 6 0 of the quantum Bethe-Ansatz thermodynamics gives a new set of in-

tegral equations for the thermodynamics of the classical massive-Thirring-sine-Gordon model. The
theory contains the thermodynamic information about breathers and solitons, and reproduces the
transfer-matrix-method result for arbitrary coupling constant.

PACS numbers: 05.30.—d, 05.20.—y, 11.10.Lm

The thermodynamics of the sine-Gordon model de-
scribed by the Hamiltonian

H = dx j 2 p, + —, p, +m (1 —cosp)}
To

has been developed along two independent lines: quan-
tum theory and classical theory. The quantum thermo-
dynamics has basically been settled by the Bethe-Ansatz
(BA) method' and the factorized S-matrix method. On
the other hand, the classical theory has its own impor-
tance and beauty, and has been extensively studied by
the soliton-gas phenomenology and the transfer-matrix
(TM) method. The latter gives an exact free energy,
whereas the former explores the soliton contribution to
the thermodynamics which is beyond the scope of the
TM method. The first connection between the quantum
BA method and the classical TM method was made by
the present author in the weak coupling limit where the
quantum theory reduces to the classical theory: The
leading term in the free energy calculated by the classi-
cal TM method was reproduced by the quantum BA
method. (See Sasaki, Maki, Chen, Johnson, and

Fowler, " and Timonen et aL for recent developments in
the weak coupling regime. ) On the other hand, Takaya-
ma and Ishikawa, ' and Sasaki" recently developed a
new formulation of the classical soliton-gas phenomenol-
ogy. Although their study is important i.n that it is for
an arbitrary coupling constant, their theory for calculat-
ing the free energy still contains a factor 2tz6 originating
from the quantization of particle momenta, and there-
fore it is not a genuine classical theory. The significance
of the factor 2z6 and its intuitive treatment was first
discussed by Theodorakopoulus ' and Opper ' in the
context of the Toda lattice.

In this Letter, I shall study the proper classical limit
0 of the quantum BA thermodynamics, and make a

complete connection between the quantum BA method
and the classical TM method through a new set of cou-
pled integral equations. The new equations are for the
renormalized energies of solitons and breathers at finite
temperatures, identifying the respective contributions of
solitons and breathers to the free energy, and the calcu-
lated total free energy exactly agrees with that of the
classical TM method for arbitrary coupling constant.

I work on the massive-Thirring model described by the
Hamiltonian with an explicit trz and c =1:

a=j dx[ tA(ij/1'8 v 1 I//28xp2)+mp(+1 @2++2+1)+2gp+1+2+2v l~

!
With the identification '

(2)

gp =16/zp,

the sine-Gordon model (1) is equivalent to the fermion
field theory (2). The complete analysis of the Hamil-
tonian (2), i.e. , the Bethe wave function, physical vacu-
um, elementary excitations (solitons and breathers), and
the renormalized two-body phase shifts between elemen-
tary excitations, is given in Ref. 1.

The Dirac 6 appears in the theory in the following
manner. First, it appears in the energy spectrum of the
breather

E„(a)=2M, sin[ —,
'

ntt(rt/lt —1)1,

n=1, 2, . . . ,
p

through the constant p,

p = —cot '(gp/2h, ) .

M, is the soliton mass and should be identified as the
classical soliton mass 8/zp in the limit A. O. In the
limit 6 0, p z from below, and the mass spectrum
of the breather becomes continuous with spacing —6. It
is noted that the Korepin excitations, exotic excitations
in the quantum theory, disappear in the limit 6 0.
This means that soliton and antisoliton behave exactly
the same way, and therefore the contributions of antisoli-
tons can be counted by simply doubling the contributions
of solitons.
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Second, it appears in the quantization of momentum

P, (a) = x integer+ —g da'A~. ;(a' —a)p;(a'),2~6 1

where i and j run over breathers and solitons, h~; denotes the two-body phase shift between &-kind and j-kind excita-
tions, and p; denotes the density distribution of the i-kind excitation in the rapidity space. In the limit 6 0, the rath-
er intricate quantal phase shifts 3, take the following simple forms:

6 cosh(a/2) + 1

)
A„(a) = —, goin

( / )
=—A»(a/2), (7a)

a,g(a) =goin . =a,g(a/2),|) cosh(a/2)+sinO
a 2 cosh a 2 —sin0

(7b)

8
1

cosh (a/2) —cos (0+ 0') cosh (a/2) + cos (0—0')
8(a/2) cosh(a/2) +cos(0+ 0') cosh(a/2) —cos(0 —0') (7c)

where for the nth breather in the spectrum (4), I have
defined a new variable 0 as freedom. Working in the particle number representation

with particle number densities p and associated hole den-
sities P in the rapidity space, the number % is identified
as

Here we can see the first connection to the classical
theory. From (4), (8), and the fact that p x from
below, we find that

%=2LJr dap, (a)+2L g. &t dap;(a),
i =breathers

(i 2)

where the factor 2 in the first expression accounts for the
contribution of antisolitons, whereas that in the second
expression is due to the fact that a breather has an inter-
nal degree of freedom as well as a translational degree of
freedom. In this way, the classical free energy
F=E—TS contains an additional term which does not
exist in the quantal expression [cf. (4.2) and (4.4) of
Ref. 1, Boltzmann's constant =1)]:

—KT in(2zrh ) . (i3)

0~ 0~ ~/2,

and (4) reduces to the classical energy spectrum of the
breather. As for the classical two-body phase shifts, I
note that a quantal entity which continuously develops to
the classical solitary wave in the limit 6~ 0 is not the
quantized solitary wave itself, but its wave packet with a
group velocity

8 co Bco/6a
6k Bk/Ba

(io) Correspondingly, due to the continuous availability of
phase space in the classical thermodynamics, the ratio
P/p behaves like —2~6 for solitons and —(2xh) for
breathers. Therefore the e functions of Yang and
Yang' in the present case should be introduced as fol-
lows:

With this in mind, I have directly calculated the two-
body phase shifts from the Hirota multisoliton solu-
tion. " With appropriate analytic continuations in the
rapidity space, the calculated phase shifts agree with the
derivatives (7), not d, themselves as is expected, except
for a field-theoretic renormalization a~ a/2, which can
be removed by the rescaling a/2~ a in the final integral
equations (15) and (16) below.

Finally in the limit 6 0, the classical volume ele-
ment 0 in phase space is related to the number of corre-
sponding quantum states + by

P, (a)/p, (a) =2nh exp[a, (a)/T],

p(O, a)/p(O, a) =(2@A) exp[E(O, a)/T] .

(14a)

(i4b)

The above arguments justify and extend an intuitive pro-
cedure of Theodorakopoulos' and Opper ' for the Toda
lattice.

n =(2 h)~e, (ii) Minimizing the free energy with respect to variations
of densities p; [note that (6) relates p to p], and taking

where % denotes the number of associated degrees of the classical limit 6 0 with all the above arguments, I
reach the following set of integral equations:

p n/2
(a) =M, cosha+2TJ"da'A„(a' —a)exp[ —e, (a')/Tl+2ztgoTJ dO "da'A, z(a' —a)exp[ —e(O, a')/T], (15a)

e(O, a) =2M, sinOcosha+2TJ da'A, e(a' —a)exp[ —e, (a')/T]
f m/2

+2' oT„dO „da'Aqg (a' —a )exp [ —e (0', a') /T] . (1Sb)
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In terms of the solutions of (15), the free energy is given by

F t ~/2—= —2T, I dtt M, coshaexp[ —e, (a)/T] —2ttgoT„dO da2M, sinOcoshaexp[ —e(O, a)/T] . (i6)

The free energy (16) should be compared with the TM
4, 6, 17free energy ' ' temperature regime

F T e 1+ao/2q—= ——ln 2zl T — +
L l 70

(i7)

where q=(2/zoT) and ao is the smallest eigenvalue of
the Mathieu equation

p"+ (ao —2q cos2x)p =0. (i8)

The lattice constant l is related to the cutoA' ~ o. in

the integral equations (15) and (16) by sinha =tz/l.
Here an important remark is due on (16) and (17).

That is, they are not mathematically equivalent because
(16) is negative definite, whereas (17) can be positive
when the quantity j—= T/ cos ha «1. We must note,
however, that both formulas (16) and (17) are expected
to provide an accurate classical free energy only in the

In the case of the Toda lattice, where only a solitonlike
excitation exists, Opper ' proved a rigorous mathemati-
cal equivalence between a BA free energy and the Toda
exact free energy. ' In the massive- Thirring-sine-
Gordon model, in contrast to the Toda lattice, we have
breathers as well as solitons, and I find that the sum over
the breather spectrum and the classical limit 6 0 do
not commute in the nonclassical temperature regime,
giving rise to the above mentioned lack of rigorous
mathematical equivalence between (16) and (17).

This can be seen most clearly in the weak coupling
limit To 0 or go ~. In this limit, the soliton contri-
bution disappears, and (15b) and (16) reduce to, after
the rescaling goO O,

'

p oo

e(O, a) =Ocosha+8tt T„dO'min(O, O')exp[ —e(O', ct)/T],
p oo

F/L = —2tzT„dacosha dOOexp[ —e(O, ct)/T] .

(i Sb')

(i6')

This is the procedure which first takes the limit 6 0 and then the sum over the breather spectrum. If we sum over
the breather spectrum first, we get

F/L = (T/2tt)& dacosha in[1 —exp( —Acosha/T)] —(K/L) T In(2tz6), (20)

where the second term comes from (11) with K denoting
the number of the lattice points. In the limit 6 0,
(20) becomes mathematically identical with the TM ex-
pression (17) in the weak coupling limit zo 0.

My last task, therefore, is to show the equivalence be-
tween Eqs. (15) and (16) and Eqs. (17) and (18) in the
classical temperature regime g~ 1 for arbitrary coupling
constant zo Ihave examin. ed two typical cases: (i) the
weak coupling limit zo 0, T=8, and a =ln(6T)/2,
and (ii) zo= 1, T=8, and a =ln(6T). Case (i) is ex-
amined by (15b') and (16'), whereas case (ii) by (15)
and (16). In both cases, the calculated free energies
agree with those of (17) and (18) within a numerical er-
ror (~ 1% relative error).

To summarize, a new set of integral equations is de-
rived for the thermodynamics of the classical massive-
Thirring-sine-Gordon model for an arbitrary coupling
constant, and is shown to reproduce the transfer-matrix-
method result in the classical temperature regime. De-
tails of the present paper along with further analysis of
the basic equations will be reported elsewhere.
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