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FIG. 3. The logarithmic derivative of the soliton amplitude
k as a f unction of the logarithm of the amplitude 4 for
different initial amplitudes and widths (R =20 0, G =0). The
initial states for the curves starting from the top were some-
what narrower than the ideal solitons (4).

quantities; they are J& =P„=— Q„, when G =0, or
Jq=g„= I„, when—R =0. Computational errors were
checked by comparing theoretical and numerical values
of these quantities, and the errors were always smaller
than 0.3%. The values of the parameters were L =22
pH, Qo =583 pC, and Fo =6.2 V (these values were also
used in our previous experimental studies ' ). The num-
ber of lattice sites was 200.

Let us first look at the behavior of a single soliton.
Figure 2 shows how the soliton changes as a result of the
dissipation. The solution is shown at 21 diA'erent mo-
ments of time, with a time interval of 3.2(Fo/Lgo) '

Fl( v 5 T'hG ~ T"e time evolution of an initial state given by an
ideal two-soliton solution with R =20 0, G =0.

The initial state was an ideal one-soliton solution (4)
centered around the lattice point n =100 and with the in-
itial amplitude A [=Fosinh (ro) in (4)] =6.0 V. (The
dissipation was caused by R =20 0, G =0.) As the soli-
ton travels a positive tail appears behind it. There is also
a definite dip after the soliton. The same properties have
been observed in experiments. We have found a good
approximate solution for the tail using simple linear
methods.

The amplitude of the main soliton part decreased to
19/o of the original after it traveled sixty lattice points.
To characterize the soliton decay further we have calcu-
lated the logarithmic derivative of the soliton amplitude
k =(L/R)d, A/A. Results are shown in Fig. 3.

An important observation is that the curves starting
with diAerent initial amplitudes (but with the same resis-
tance) seem to approach a common curve rather quickly.

152 190Lattice point n

FIG 4 T. 4. T'wo one-soliton solutions with diAerent initial am-
plitudes A =4.0 V (thin line) and A =8.0 V (thick line)
recorded at a moment when they have the same amplitude.
The taller soliton had traveled 3348 ns and the smaller 2374
ns.

Lattice point n 200

FIG. 6. The time evolution of an initial state given by an
ideal two-soliton solution with R =0, G =8.54' 105 Q
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FIG, 7. (a) A two-soliton solution after the collision (2),
two one-soliton solutions (B and C), and the result after the
subtraction 8 —(B+C), R =20 tt, G =0. (b) Same as in (a)
but the vertical scale magnified by a factor of 6.

This suggests that there are some definite decaying soli-
ton solutions (which does not depend on the fine details
of the initial conditions) which attract all initial shapes.
This can be seen clearly in Fig. 4, where two solutions
with diAerent initial amplitudes are plotted together.
The elapsed time was chosen so that the highest two v„
values of the solitons would be the same. The soliton
parts are identical although the tails are diA'erent.

For integrable systems it is well known that multisoli-
ton solutions are attractors to all initial configurations.
It is interesting that this phenomenon survives the rela-
tively strong dissipation. Apparently the time scale for
attraction is still smaller than the time scale for decay.

Let us next consider what happens in a collision. In
our numerical simulation of head-on collisions the initial
state was a sum of two ideal one-soliton solution (this is

a good starting point because the solitons have practical-
ly no overlap), with the greater soliton (A =6.0 V) cen-
tered at the lattice point n =70 and the smaller (A =2.0
V) at n =130. Figure 5 illustrates how the initial state
develops as a function of time in the case of R =20 Q,
G =0. The tails overlap after the collision. In the case
of R =0, G =8.54&10 0 ' the tails are negative as
shown in Fig. 6. The strength of dissipation is in both
cases so strong that the pulse amplitudes decreased to
14%-26% of the original value after the pulses traveled
sixty lattice points.

FIG. 8. Same as Fig. 7 but R =0, 6 =8.54x10 0,

Figures 7 and 8 show that the collision is purely elas-
tic. The top curves are the final configurations from
Figs. 5 and 6, the two curves in the middle describe how
a single pulse would have evolved in the same time
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FIG. 9. The logarithmic derivative of the soliton amplitude
k as a function of the amplitude A (R =20 rt, G =0) for the
colliding solitons (thick line) with tail corrections (the behavior
after collision without tail corrections is given by the dashed
line). The decay of amplitude follows closely the behavior of
the single soliton (thin line). The values of k during collision
are not shown.
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period, and the bottom curve shows the result after sub-

tracting the two one-soliton solutions from the two-
soliton solution. The computed single pulses were initial-
ly located slightly ofI' the starting points of the colliding
solitons in order to account for the phase shift. The last
curve is practically zero everywhere and shows that the
solitons scatter elastically within numerical accuracy.

We have calculated the logarithmic derivative of the
soliton amplitude also in the case of the collision as
shown in Fig. 9. Before and after the collision the ampli-
tude dependence of the k quantity is the same as for the
one-soliton solution, if the amplitude of the tail is sub-
tracted from the amplitude of the soliton (cf. Fig. 3).

The numerical results presented here show that certain
properties of exactly solvable soliton systems persist even
when the system is strongly dissipative. Of course we
have to give up the idea of a permanent traveling wave,
but many interesting properties remain: We have shown
that there is some (decreasing) traveling wave which at-
tracts all initial conditions, and that the collision of two

waves is elastic. The extension of analytical methods to
cover this situation will be an important problem.
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