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Optical Properties of (100)- and (111)-Oriented GainAs/GaAs Strained-Layer Superlattices
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We have studied the optical properties of GalnAs/GaAs strained-layer superlattices grown along the
[1001 and [111] crystallographic axes. Absorption and luminescence spectra for the two superlattices
show qualitatively different behavior. These differences are attributed to the presence of strain-
generated electric fields in the (111) strained-layer superlattice, which have been predicted theoretically
but have not been previously observed experimentally.

PACS numbers: 78.65.Fa, 73.20.Dx, 78.55.Cr

It is now well established that strained-layer superlat-
tices (SLS's) can be grown with a high degree of crystal-
line perfection. ' For sufficiently thin layers, the
lattice-constant mismatch is accommodated by internal
strains rather than by the formation of dislocations. To
date, virtually all SLS's have been grown along the [100]
axis. A new effect in SLS's with a [111]growth axis has
been predicted: large internal electric fields generated by
the piezoelectric eA'ect. " Such strain-generated electric
fields are not expected in (100) superlattices. Theoreti-
cal arguments suggest that these internal electric fields
should substantially change the electronic structure and
optical properties of (111)SLS's and lead to large non-
linear optic and electro-optic effects. The fields cause
a tilting of the energy bands and lead to a red shift of op-
tical transition energies and changes in oscillator
strengths. In this Letter, we present a comparative study
of the optical properties of (100) and (1 11)
Ga~ — In„As/GaAs SLS's. We show that the lowest-
energy intrinsic transition shifts to the red by about 20
mev in the (111) sample. The spectra of this sample
can be fitted only by including the strain-generated elec-
tric fields. These results give strong evidence for the
presence of the strain-generated electric fields in (111)
SLS's and are the first observation of physical conse-
quences of these fields.

The strain-generated electric fields are the principal
difference expected between (100) and (111) superlat-
tices. Only small quantitative changes in the electronic
structure and optical properties are expected due to an-
isotropies in effective masses, deformation potentials,
etc. Recent experimental work on the lattice-matched
Ga~ — Al„As/GaAs system, where strain-generated elec-
tric fields do not occur, has borne out these expecta-
tions. Absorption spectra for these lattice-matched
(100) and (111) superlattices are very similar. There is
a one-to-one correspondence between absorption peaks,
and the strength of corresponding transitions are very
nearly the same. Thus, if one neglects the strain-
generated electric fields, one expects (100) and (111)su-

perlattices to behave very similarly.

We investigated two Ga~ —,In, As/GaAs SLS samples
grown simultaneously by molecular-beam epitaxy on
semi-insulating GaAs substrates. One sample was grown
on a (100) substrate and the other on a (111) B sub-
strate. Details of the growth procedure have been de-
scribed previously. Each superlattice consisted of twen-
ty periods of 70 A of the Ga~ In„As well and 140 A of
the GaAs barrier. Secondary-ion-mass spectroscopy
profiling was used for layer thickness characterization.
Within the accuracy of the measurements (about 10%)
the periods of the two superlattices were the same and
were equal to the value expected from the growth cali-
brations. Rutherford backscattering was used for com-
position characterization. The In composition in the two
samples was similar and given by x =0.10~0.02. The
superlattices were grown on a 3000-A. graded buffer of
GaInAs. Thus, we expect a "free standing" superlattice
with the thinne: GaInAs wells strained approximately
twice as much as the GaAs barriers. The samples were
not intentionally doped. However, there was carbon in-
corporation at about the 10' -cm level, so that the su-
perlattices were lightly p type.

Figure 1 shows the absorption spectra of the (100) and
(111) samples taken at 4.2 K. The arrows mark the
peaks of the main intrinsic luminescence lines observed
in the two samples. The strong-absorption threshold at
X-832 nm in both samples is due to the substrate
and/or buffer. In the (100) sample, two principal ab-
sorption features are seen. These features show up as
steps. Excitonic effects are not pronounced in these spec-
tra. The luminescence lines occur at the absorption
threshold and are shifted to lower energy with respect to
the midpoint of the absorption step. In the (111) sam-
ple, three principal absorption features are seen. Again,
these features show up as absorption turnons rather than
excitonic peaks and the luminescence lines occur at the
absorption thresholds.

Figure 2 shows a luminescence spectrum from the
(100) sample and two spectra from the (111) sample.
These spectra are representatives of a large data set tak-
en at temperatures between 4.2 and 150 K and excitation
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from the main peak by about 10 nm (16 meV). We at-
tribute the low-energy shoulders on the 876- and 851-nm
lines to C] and C2 to acceptor transitions, respectively.
The two shoulders have the same temperature and exci-
tation dependence. They saturate at high intensity and
lose intensity at temperatures greater than about 30 K.
This behavior is consistent with impurity-related transi-
tions. The shoulders on the 876- and 851-nm lines
strongly support the identification of the 851-nm line as
a C2-hhl transition.

Luminescence measurements at 4.2 K show that the
dependence of the intensity ratio I(851 nm):I(876 nm)
in the (111) sample on excitation power is opposite to
that of the ratio I(841 nm):I(851 nm) in the (100) sam-
ple. At 50-W/cm excitation, the intensity ratio (851
nm:876 nm) is 1:80, whereas at 1 mW/cm, this ratio is
2:1. This intensity dependence shows that the 851-nm
line cannot correspond to a transition involving an excit-
ed hole state. At the lowest excitation, 1 mW/cm, the
density of photoinjected holes, which can persist in an
excited state, is significantly lower than the density of
doped-in holes, which are in the hhi ground state. "
Since the 851-nm line is more intense than the 876-nm
line at low intensities, it must correspond to a transition
involving an excited electron. The excitation dependence
of the 842-nm line follows that of the 851-nm line, and
so this transition must also involve a hole in the hhi
ground state and an excited electron.

We have performed a series of electronic structure
calculations on free-standing (100) and (111)
Gai —,In„As/GaAs superlattices using the method of
Ref. 12. We fixed the Ga| —,In„As thickness at 70 A,
the GaAs thickness at 140 A., and adjusted the composi-
tion to give the transition energies for the C]-hh[ transi-
tions. This gave x =0.08 for the (100) sample and
x =0.10 for the (1 1 1) sample. These values are con-
sistent with the Rutherford backscattering composition
measurements. On the basis of Ref. 13, we take the
average valence-band oA'set independent of orientation
and strain conditions. We find (AE, , ) =0.2x eV. This
value is somewhat larger than that reported in Refs. 14
and 15, equal to that in Ref. 16, and smaller than that in

Ref. 17. Our results and interpretation are not strongly
dependent on the choice of valence-band offset. Other
input parameters are the same as in Ref. 5.

In Fig. 3, we show calculated energy-band diagrams
for one well and two barriers for the (100) superlattice
[(a)], the (111)superlattice neglecting the internal elec-
tric fields [(b)], and the (111)superlattice, including the
internal electric fields [(c)]. The calculated energy posi-
tions of the lowest electron and hole states, relative to the
band edges, are also shown. For states with significant
dispersion along the growth axis, the bandwidth for k in

this direction is indicated.
In the conduction band of the (100) superlattice, only

the C] state is confined in the wells. The C2 level starts
a three-dimensional continuum. The superlattice is
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I.IG. 3. Calculated energy-band diagrams and electronic-
state energies for (a) (100) oriented SLS, (b) (111) oriented
SLS, neglecting strain-generated electric fields, and (c) (111)
oriented SLS, including strain-generated electric fields.
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slightly type II for light holes. Even the lowest-energy
light-hole state is essentially unconfined. The lh& state is

slightly higher in energy than the hh2 state at the zone
center, and there is strong admixture of these two bands
slightly away from the zone center. The results for the
(111) superlattice neglecting the internal fields are very
similar to those for the (100) superlattice. The sloping
band edges in Fig. 3(c) are due to the electric fields
(1.0x10 V/cm in the well and half this value in the bar-
rier). Note, the electric fields have qualitatively changed
the electronic structure compared to the results of Figs.
3(a) and 3(b). For example, the C2 states are now
confined by the triangular potential due to the internal
electric fields.

The experimental results on the (100) sample are well
described by the calculations shown in Fig. 3(a). The re-
sults on the (111) sample cannot be even qualitatively
interpreted in terms of the calculations of Fig. 3(b),
which neglect the strain-induced electric fields. Those
calculations give results which are almost the same as for
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the (100) sample and would predict similar behavior,
whereas we observe qualitatively diAerent behavior for
the two samples. However, the experimental results on
the (111) sample are well described by the calculations
shown in Fig. 3(c), in which the internal electric fields
are included.

In summary, we have presented a comparative study
of the optical properties of GainAs/GaAs SLS's grown
along (100) and (111). These results give strong evi-
dence for the presence of strain-generated electric fields
in (111) SLS's having a magnitude predicted by elastic
theory.
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