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V ibrations of amorphous Si are represented by the network model of Wooten, Winer, and Weaire and
the forces of Stillinger and Weber. It is shown how the Kubo formula for thermal conductivity can be
evaluated "exactly" assuming harmonic vibrations, making only finite-system-size errors. The results

support a "shunt-resistor model" which fits data for glasses very well.

PACS numbers: 66.70.+f, 61.40.+b, 63.50.+x

In a recent review, ' Freeman and Anderson claim
with only slight exaggeration, "the thermal conductivity
of an amorphous solid is not understood in any tempera-
ture range. " There are three characteristic temperature
intervals: (a) low T (~ 1 K), where K(T) = T' has
a reasonably good explanation as (Boltzmann-type)
transport by propagation of long-wavelength vibrational
modes scattered occasionally by localized two-level sys-
tems; (b) intermediate T (4 K ~ T ~ 20 K), where the
"plateau" seen in many disordered systems has evoked a
wide variety of explanations; and (c) high T ( & 30 K),
where tc(T) rises smoothly to a limiting value tc(~), un-

like crystalline insulators where propagating short-wave-
length phonons scattered by anharmonic interactions
give tc(T) cs-1/T. Regime (c) has a qualitative explana-
tion due to Birch and Clark and Kittel, namely that
the dominant high-energy vibrations are so strongly scat-
tered by local disorder that one should assign the
minimum sensible mean free path, l = a where a is a
typical atomic spacing, in the kinetic formula tc =Cvl/3.
This paper addresses the high-T regime (c), and in the
process sheds some light on regime (b).

Kittel s qualitative picture, while useful, is not satis-
factory, since the kinetic formula CUl/3 is applicable
only in the Boltzmann regime where one can assign ve-
locities v to propagating modes. Graebner, Golding, and
Allen demonstrated convincingly that beyond the edge
of the plateau (T ~ 20 K) the dominant vibrations prop-
agate distances shorter than the hypothetical wavelength
2ttU/co. In other words, they cannot be assigned a wave-

length or a velocity. Thus, it is unclear what meaning
should be given to Kittel's formula Cva/3. It is often
suggested that the higher-frequency vibrations are local-
ized in Anderson's sense. The constant tc(~) behavior
at high T indicates otherwise. If the dominant modes at
high T were localized, then energy could only be trans-
ported by hopping via anharmonicity, which should ex-
hibit a characteristic T dependence.

The basis for our work is the observation that the
Kubo formula
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can be evaluated by brute force with only finite-system-
size errors, provided the atoms are assumed to vibrate
harmonically (i.e. , anharmonic processes are assumed to
have little infIuence compared to the eAect which disor-
der has on the vibrations). In Eq. (1), —tc„,e ' ' is the
heat current in the p direction which responds to an os-
cillatory temperature gradient BT/Br, e ' ' of unit am-

plitude, S(t) is the heat current operator ' in the
Heisenberg, picture, P= 1/kttT, V is the volume of the
sample, and angular brackets denote an equilibrium en-
semble average. The normal modes of harmonic vibra-
tion have eigenfrequencies co; and eigenvectors Ii) where
&I,p Ii) =e;(I,p) is the polarization vector component
corresponding to atom l and the p direction. Then Eq.
(1) can be reduced to ' '
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where S is a related matrix to the ordinary dynamical
matrix and n; is the equilibrium occupation
[exp(PAco;) —I] '. The electrical conductivity of met-
als has a Kubo formula analogous to Eq. (1). The in-
dependent electron approximation is analogous to the
harmonic approximation, and the electronic analog of
Eq. (2) is often known as the Kubo-Greenwood formu-
la. '2 To make sense of the sum in Eq. (2), the 8 func-
tion should be given a width g which goes to zero only
after V goes to ~. Our procedure involves "exact" eval-
uation of Eq. (2) for a finite sample with boundary con-
ditions chosen to eliminate surface efIects. Specifically,
we use both periodic and antiperiodic boundary condi-
tions, and average the results. The width q of 8(co)
= q/tt(co +q ) is chosen to be = 2 K, about 10 times
greater than the minimum level spacing. Our results for
x are not sensitive to this choice.

To test theory, we need (i) a model for the coordinates
Rt of the atoms, with periodicity in a large supercell; (ii)
a model for the interatomic forces; and (iii) experimental
results to compare with. The comparison, of course,
tests not only Eq. (2) but also ingredients (i) and (ii) of
the calculation. We chose amorphous Si because of
much recent work on models' and forces. ' In particu-
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FIG. l. Vibrational density of states for the WWW model
(Ref'. 15) of a-Si with use of the SW potential (Ref. 16). The
continuous curve is from neutron scattering (Ref. 20). The
histogram sums up 648 modes with periodic boundary condi-
tions and an equal number with antiperiodic boundary condi-
tions.

lar, we use the Wooten-Winer-Weaire' (WWW) coor-
dinates (216 atoms in a cubic cell repeated periodically),
and the Stillinger-Weber' (SW) two- and three-body
potential, which appears to give satisfactory vibrational
properties. ' The WWW coordinates have been further
relaxed to a local minimum of the SW potential. ' Ex-
perimental results for x.(T) in a-Si have just become
available. ' The distinction which is often made between
"glasses, " such as a-Si02, and "amorphous thin Alms,

"
such as a-Si, seems to arise from smaller barrier heights
to recrystallization in the latter case. Amorphous Si pro-
vides a good model for the glassy properties that we ad-
dress. Crystalline Si is unusually harmonic; tc (T=300
K) exceeds that at a-Si by 10 . Neglect of anharmonici-
ty is then justified on the assumption that a-Si is not
much more anharmonic than crystalline Si.

As shown in Fig. 1, the SW potential, together with
the WWW amorphous coordinates, gives a vibrational
spectrum N(ro) which agrees reasonably well with exper-
iment. The principal discrepancy, a 10% overestimate
of the highest-energy peak, occurs also when the SW po-
tential is applied to crystalline Si. ' ' Biswas et al.
have obtained excellent agreement with experimental
N(ro) from the WWW coordinates using a Keating po-
tential. Our results for the inverse participation ratio
agree closely with Ref. 21; that is, we find the uppermost
2% of the eigenmodes to be localized, with all other vi-
brational modes well delocalized, at least on the scale of
our 16-A supercell. There are no well localized modes at
lower energies, in contrast to models with dangling bonds
where Ref. 21 found a small number of localized states
in the lowest part of the spectrum.

Typical curves of tc(co) vs ru are shown in Fig. 2. The
xx, yy, and zz components of K„, have been averaged to-
gether, as have the results from periodic and antiperiodic
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FIG. 2. x(ro) evaluated with Eq. (2) and the model of Fig. I

for vibrations of amorphous Si. The dashed line is our extrapo-
lation to m =0.
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FIG. 3. The present theory for K(T) is represented by bars
(I) indicating estimated finite-size errors in v2(T). The dots
are data of Ref. 19. The solid curves are from Eq. (7) with
D(co) = ,
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I

100

boundary conditions. Because of the Anite system size, it
is necessary to extrapolate to co=0. To understand the
origin of the dip occurring near m =0 in Fig. 2, we have
computed the joint density of states J(co) =p;~8(co;—

co~
—co) using the same broadening tI=2 K in the 6

function. If the term with i =j is included, J(co) is
smooth, but when it is omitted, a dip occurs of exactly
the size and shape seen in tc(co), where the i =j term is
also omitted because the diagonal elements (i

~
S ~i) are

zero for our system. The relative size of the dip in J(co)
or x(ro) vanishes in the infinite volume limit.

Results for x.(T) are shown in Fig. 3, and compared
with the experiment. ' The theory asymptotically ap-
proaches a limit of tc(~) =1.2 W/mK as T=ee. The
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experiment stops at T=150 K, but appears consistent
with a high-T saturation at x(~) =1.1-1.3 W/mK. At
150 K, experiment exceeds theory by a factor of 1.4,
whereas at 50 K the factor is 4.0. This discrepancy is
not unexpected, as will be explained below.

Let us first try to understand the shape of the calculat-
ed K(T) in Fig. 3. From Eq. (2) in the ro~ 0 limit, we
have

(3)

This can be written in terms of the contribution
C; =(fi co; IT) ( —Bn;/BA co; ) of the ith mode to the heat
capacity C(T) as

(4)

provided we define the "mode diffusivity" D; as

To motivate the definition (5), it is not hard to show
that for a perfect crystal, with eigenstates Ii) being
propagating states, the right-hand side of Eq. (5) is

Uk/3il where rl is the width of the Lorentzian 6 function.
Strictly g is infinitesimal, corresponding to the infinite
diffusivity and conductivity of the perfect crystal, but it
is qualitatively correct for a nearly perfect crystal to
identify q with the relaxation rate 1/r.

The mode diffusivity D; is a characteristic property of
the ith eigenstate, and has not to our knowledge been
defined previously. It is also useful to define average
properties:

/V (co)D(co):gD; 6(co; ——co),

and therefore

1
f+ oQ

~(T) =— dco N(co) C(co/T)D (co),p" 4 0

where X(co) is the vibrational density of states and
C(co;/T) =C;, and where broadened 8 functions are
presumed. The frequency-dependent diffusivity D(co)
was defined and discussed by John, Sompolinsky, and
Stephen. By dimensional analysis, D(ai) is of the form
—,
' a cof(co/co), where a and ro are the length and fre-

quency scales of the glass, respectively, which can be
taken to be a bond length (2.35 A.) and the mean vibra-
tional frequency (44 meV for the theory of Fig. 1). We
have considered two different choices for the dimension-
less function f(co/oi), namely, (1) a constant C& and (2)
f=C2(co/co). Both choices are discussed by Slack in
his phenomenological treatment of minimum conductivi-
ty. The first corresponds to the assignment of a propaga-
tion length which is of order a for all modes, while the
second corresponds to a propagation length inversely
proportional to co as if to represent a wavelength (al-

though no strict definition of a wavelength is possible).
The solid curves of Fig. 3 represent Eq. (7) with these
two choices; the constants C~ =0.47 and C2=0.33 were
used to fit to the microscopic theory at T =400 K. The
similarity between the first choice and the microscopic
theory, together with the reasonable value of C~, pro-
vides microscopic support for the notion of minimum
thermal conductivity in the form suggested by Kittel. '

The physical explanation lies in the extended but nonpro-
pagating nature of the exact eigenstates, which can
diffuse because they couple to degenerate states via the
heat current operator. Localized modes necessarily have
D; =0 because no two degenerate localized modes can
overlap and the heat current operator is short ranged (if
interatomic forces are short ranged).

Finally, we arrive at the problem of the enhancement
of the experimental K(T) relative to theory in Fig. 3. It
is well established that propagating modes do exist in

glasses at very low frequencies, and that they transport
heat. Our use of periodic (or antiperiodic) boundary
conditions on a 16.3-A length scale has prohibited any
low-frequency modes (our lowest vibrational eigenfre-
quency is 5 meV). Thus, our extrapolation of K(co) to
co =0, while probably accurate for nonpropagating
modes, completely omits an extra, low-frequency com-
ponent consisting of heat transported ballistically by
phonon quasiparticles over distances larger than the 16-
A cell size. These modes have a diffusivity vl(co)/3
(here co is the normal mode frequency), where u is the
sound velocity and l(co), the mean free path, is large for
co((1 meV, but is believed to fall rapidly to zero (e.g. ,

as co due to Rayleigh scattering from density Auctua-
tions) for co~ 1 meV. Thus, there are two separate
pieces of Eq. (8): x~ (T) coming from propagating
modes missed in our theory, and x2(T) coming from
nonpropagating modes and included. The difference be-
tween theory [Kq(T)] and experiment in Fig. 3 is
presumably x~(T). The empirical separation of K(T)
into two pieces has been widely used ' and has been
called the "shunt-resistor model. " In Ref. 4,
Graebner, Golding, and Allen show that the "plateau" in
x.(T) emerges from the shunt-resistor model in a very
natural way for eight different glassy systems. We be-
lieve that we have now provided the microscopic
justification for the shunt-resistor model, at least in the
case where static disorder dominates and the harmonic
model is appropriate. The previously mysterious x2(T)
has been successfully calculated from microscopic
theory.
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nates of a-Si. We thank J. Serene for useful discussions
and P.B.A. thanks D. Emin for discussions about x(T)
and for hospitality at Sandia Laboratories where this
project was conceived. Work at Stony Brook was sup-
ported in part by NSF Grant No. DMR8814311.
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