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Diff'usion of Large Molecules in Porous Media
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The results of computer simulations of transport of macromolecules in a disordered porous medium,
represented by a network of capillary tubes with random radii, are reported. We develop a method for
determining the macroscopic diffusivity D which, in principle, is exact. The effects of both convection
and diff'usion are taken into account. We find D/D —exp( —a/r ), independent of the morphology of
the medium or the microscopic transport laws, where a is the effective size of the molecules, D the
diffusivity in an unbounded solvent, and r the mean effective size of the pores, consistent with experi-
mental data.
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Many processes of current scientific and industrial in-
terest involve the transport of macromolecules in restrict-
ed environments such as porous catalysts, Vycor glasses,
and membranes. ' A partial list of such processes in-
cludes separation or catalytic processes in zeolites or pil-
lared clays, reverse osmosis membrane separation, sol-
vent swelling rubbers, polyelectrolyte gels, enzyme im-
mobilization in porous solids, and size exclusion chromo-
tography. In addition, diffusion measurements in porous
materials can serve as an analytical tool in the character-
ization of the geometry of pore structure over a range of
molecular and macroscopic length scales. ' Numerous
experimental and theoretical studies have found the
transport of macromolecules in solution in a porous
medium to be less efficient than unhindered transport in
an unbounded solution. This reduced efficiency, which
was first pointed out by Renkin and co-workers, ' is
generally caused by the macromolecule's being excluded
from a fraction of the pore volume, and by the hydro-
dynamic resistance hindering the transport of molecules
through the porous medium.

Several theoretical models of transport in small pores
have been developed. For example, hydrodynamic
theories of mass transfer have been applied to the trans-
port processes across synthetic and biological mem-
branes, diffusion in pores of silica alumina, ' and in

porous glasses. " Useful statistical and hydrodynamic
theories of macromolecular transport in small pores have
been developed by several authors. ' '" Scaling concepts
have also been used to study transport of large molecules
in small pores. ' ' However, these works have major
shortcomings which limit their usefulness. Models that
are based on statistical hydrodynamic principles' '" are
applicable to only a single pore, and it is not clear how
one can extend these to porous media that are essentially
random networks of interconnected pores. For example,
many catalyst particles such as zeolites, and many
porous glasses that are prepared from phase-separated
borosilicate glass by acid leaching of the boron, have
such a structure. Transport paths in such networks are
highly tortuous, whereas tortuosity is totally absent in a
single tube. Qn the other hand, models that are based on

scaling arguments' ' can predict only the power-law
behavior of the diffusion coefficient, and do not give ex-
act numerical coefficients. Moreover, they are purely
phenomenological in the sense that they do not provide
any insight about the dependence of the transport
coefficients on the morphology of the pore space, e.g. , its
pore-size distribution. In this Letter, we report the re-
sults of computer simulations of transport of large mole-
cules in random networks of interconnected pores. Our
results represent the first step towards a comprehensive
theory of transport of large molecules in porous media
with interconnected pores.

We model the porous medium by a square network in
which each bond represents a cylindrical tube of constant
length I.. The effective radius r of each cylinder is distri-
buted according to a probability density function f(r),
which represents the pore-size distribution of the medi-
um; in this paper we use f(r) =2a r exp( —a r ), where
r =tr'//2tt is the mean pore size. This distribution
mimics many qualitative features of experimentally mea-
sured pore-size distributions. ' It poses no major
difficulty to carry out the same simulations with a three-
dimensional network, and we shall report the results of
such a study in a future paper. We consider the general
case in which there is a macroscopic one-dimensional
flow through the network. Thus, transport of the mole-
cules is due to the combined effects of convection and
molecular diffusion. The flux J of the molecules in each
tube is given by J=VC D, 8C/clx, where V—is the ap-
parent average flow velocity of the molecules in the tube,
D, is their apparent effective diffusivity, and C is their
concentration. If we assume that one has Poiseuille
(laminar) flow in each tube, then' '

V=V[1+2K —4.92k +O(k )],
where V=hPR /8@I. is the mean Poiseuille liow velocity
in a tube of radius R along which a pressure drop of hI'
has been imposed, p is the viscosity of the solvent, and
X =a/R. It has been assumed that the molecules can be
represented as hard spheres of radius a or, if they are not
spherical, they can be represented with an effective hy-
drodynamic radius a. The apparent effective diffusivity
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D, is written as D, =D +D„where ' '
D„, =D [1+ —,

'
X ink+0. 461K+ —,

' k Ink+ O(k )] (2)

is the apparent eff'ective molecular diffusivity of the mol-
ecules in the tube, and

R V
D, = [1 —1.862K+ 9.68K + O(k ) ]

48D
(3)

C(x,s) =We "+BeP,
where

a, P = [V+ (V +4D(s) ' ]/2D, ,

8 = [C2 —C~ exp(PL)]/[exp(aL) —exp(PL)],
and

(6)

B = [C) exp(aL) —C2]/[exp(aL) —exp(PL)] .

Assuming that the molecules do not accumulate at the
nodes of the network, one must have

SjJj- =0, (7)je &f

where [i[ denotes the set of nearest-neighbor sites of the
node i, J~ the (Laplace transformed) flux leaving node i
along tube ij, J~ = V~C; D, BC;/r)x, and S~ —is the
cross-section area of tube ij Equation (7.) is valid for
every interior node of the network. For the inlet nodes
we impose the condition QS;~J;J =1, corresponding to a
8-function input of flux. Equations (6) and (7) yield a
set of linear equations for the (Laplace transformed) no-
dal concentrations C;, which can be solved for any value
of s. From the solution of this set, one can calculate all
quantities of interest such as the macroscopic eAective
diA'usivity D. We have assumed that there is complete
mixing of the molecules at the nodes of the network, so
that to each node we assign a unique concentration C;.
Aside from this assumption, which is at least a good ap-

is the contribution of convection to D, . Here D
=kT/6trpa is the effective diA'usivity of the particles in

an unbounded solvent, where T is the temperature of the
system and k is Boltzman's constant. Equations (1)-(3)
are asymptotically exact, and the terms in the brackets
represent the corrections to the usual expressions for V
and D, due to the finite size of the molecules. The con-
centration C obeys a one-dimensional convective-
diflusion equation,

ac ec e'c
Bt Bx

If we introduce the Laplace transform

C(x,s) =~" C(x, t)e "dt, (5)

then Eq. (4), subject to the boundary conditions
C(x =0, t) =C~(t) and C(x=l. , t) =Cz(t), can be easily
solved. The solution is given by

proximation (a matter which is currently under study),
our treatment of the problem in the random network is
exact.

Thus, the procedure to calculate the macroscopic
eAective diff'usivity D of the molecules is as follows. We
first determine the Aow field through the network by ap-
plying a fixed pressure drop between the inlet and outlet
nodes. If there is Poiseuille Aow in each tube, then the
fluid flow problem is isomorphic to current flow in a ran-
dom resistor network. Thus, we have a set of linear
equations for the nodal pressures which we solve by
Gaussian elimination. After determining the back-
ground flow field, we calculate the apparent mean flow
velocities, Eq. (1), and the apparent eA'ective diA'usivities

D, for all tubes for a given molecular size a and a pore-
size distribution f(r). We then use Eqs. (6) and (7),
with the boundary conditions mentioned above, to solve
for the (Laplace transformed) nodal concentrations C;.
Unlike the set of linear equations for nodal pressures, the
matrix of coefIicients for the nodal concentrations is not
symmetric. We fix s and solve this set by Gaussian elim-
inations. We then use a numerical inversion to convert
the solution to the time domain. From the distribution
of nodal concentrations we determine the macroscopic
eAective diAusivity. We used L x Ly networks where
L =40, Ly =30, and x is the direction of macroscopic
flow. We used periodic boundary conditions in the y
direction, and the results represent the average over up
to twelve diAerent network realizations. More extensive
simulations are, of course, necessary, but we believe that
the qualitative features of our results will not change
with more extensive simulations.

We carried out two types of computer experiments. In
the first one, we fixed the molecular size a and varied the
pore sizes. We start with a given molecular size, use
f(r) mentioned above (with a =1), and calculate D. We
then hold a fixed and multiply all pore radii by a con-
stant factor, thus changing k =a/r, calculate D, and so
on. The results are shown in Fig. 1 where we used the
experimentally typical values a =400 nm and D
—5X10 cm /sec. In the second experiment, we hold
f(r) fixed (i.e., pore radii are held fixed) and vary a.
The results are shown in Fig. 2. In these two figures the
eff'ect of convection has been taken into account. More-
over, in Fig. 2, the eA'ective diA'usivities with and without
convection are compared and, as expected, convection
enhances transport, so that D is larger when convection
is present. The first simulations correspond to our using
the same macromolecules with diA'erent porous media,
while the second simulations correspond to our measur-
ing the diAusivities of various molecules in the same
porous medium. Both are typical of the past laboratory
measurements. As can be seen, as X increases, D de-
creases sharply and appears to vanish as X 1.

Figure 3 represents the dependence of ln(D/D ) on X

in the limit of a vanishing Aow field when a is held fixed
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ever, unlike Fig. 2, we cannot make a direct comparison
between the pure diffusion case (Fig. 3) and combined
diffusion and convection case (Fig. I ), because in this
case the molecular size is fixed and the pore-size distri-
bution of the porous medium is varied, which, in turn,
changes the Aow field and, thus, the efI'ective diAusivity
in a nonlinear way.

Our model provides a method of estimating D trans-
port of large molecules in more complex porous media.
For example, during many catalytic processes, the pores
of the catalyst are plugged as a result of an undesired re-
action and the formation of deposits. Thus, at some
point the catalyst loses its macroscopic connectivity,
reaches its percolation threshold and is completely
deactivated. Estimation of the eAective diA'usivity of
large molecules in a partially deactivated catalyst (i.e., a
percolating system) is an important and yet unsolved
problem. It is straightforward to include percolation
eAects in our model and apply it to catalyst deactivation
processes. Moreover, it is currently controversial '
whether the eftective transport properties of macro-
molecules under nonreactive and reactive conditions are
the same. Our model and method provide a rational
framework to resolve such a controversy. Finally, it has
been suggested that for many dynamical processes of
excited molecules in restricted environments, e.g. , porous
silicas, the mean pore size r is a significant length scale.
The (possibly) universal exponential dependence of
D/D on X provides a relatively straightforward way of
estimating r by performing diffusion and/or convection
experiments, which may be easier and more accurate
than other experimental methods such as small-angle
x-ray scattering, surface-area measurements, and elec-
tron micrographs. We are currently investigating these
issues. The results will be reported elsewhere.
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