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Magnetic properties of the two-dimensional Hubbard-model are inferred from results of Monte Carlo
simulations. Lattice sizes up to 8x8 and temperatures down to 7 =¢/20 (+ =hopping) were studied.
The half-filled system is found to exhibit antiferromagnetic long-range order for all values of the
Coulomb repulsion U. The low-temperature magnetic properties are found to be well described by spin-
wave theory with renormalized local moment and spin-wave velocity. Numerical evidence presented
suggests that when doped the system loses the long-range order immediately away from half filling.

PACS numbers: 75.10.Jm, 71.28.+d, 75.10.Lp

The magnetic properties of the two-dimensional Hub-
bard model are of great current interest, as the model is
likely to describe at least approximately some of the
properties of the recently discovered oxide superconduct-
ing materials.! More generally, since it is the simplest
quantum model of magnetism involving itinerant elec-
trons, a detailed understanding of its properties is desir-
able. We discuss here results of extensive Monte Carlo
simulations of the model. In the half-filled band case, we
determine the long-range order as a function of U and
discuss to what extent spin-wave theory correctly de-
scribes the magnetic properties. For the non-half-filled
band, we present numerical evidence that suggests that
the system loses its long-range order immediately under
doping.

Earlier Monte Carlo resuits?> on magnetic properties
only reached temperatures down to B=4.5 (in units
where the hopping z=1). A recent algorithmic ad-
vance’ now allows us to reach much lower temperatures.
Here we discuss results down to temperatures =20 on
lattice sizes up to 8 x8. It is necessary to reach such low
temperatures to be able to infer the ground-state proper-
ties of the system.

The model is defined by the Hamiltonian

H=—t(Z)(ci’;cj(,+H.c.)+UZn[1n,-1 —udnis. (1)
ij i io

We have studied lattices of sizes 4x4, 6X6, and 8x8,
for values of U=2, 4, and 8 (in units where r=1). A
detailed discussion of the model and early Monte Carlo
results can be found in Ref. 2. Comparison with exact
results in a 2 X2 lattice demonstrates that the program is
running properly. For most simulations we chose our
time-slice size At such that At%:U ~0.125.

In the half-filled band case, the magnetic structure
factor

S(@) =L X e ®RX (= Yy =) (2)
N i

exhibits a sharp peak at wave vector q,, =(z,7)=n. We
will discuss in detail the g dependence elsewhere.* Re-
sults for S(x) are shown in Fig. 1 for values of U =4, 2,
and 8. Note the different horizontal and vertical scales
in the three cases. We have reached in each case tem-
peratures low enough that S(x) has essentially saturated
at its ground-state values. Results for the spin-spin
correlation between the two farthest points on the L XL
lattice

Criar2={0§0i=1/2,y=1/2) 3)

exhibit similar behavior,* except that they go to zero

more rapidly as 7 is increased. Both quantities are use-
ful to extrapolate the long-range magnetic order.
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FIG. 1. Magnetic structure factor S[q=1(x,7n)] vs temperature for lattices of size 4x4, 6x6, and 8x8. The solid lines are results
of spin-wave theory (see text). The dashed lines at the right side indicate the 7'=0 limits of the spin-wave results.
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In addition to statistical error, the results in Fig. 1
have some systematic error due to the finite time-slice
size A7r. Figure 2 shows the extrapolation to Az=0 for
U =4 and lattice sizes 4X4 and 2x2, for temperatures
B=2,4, and 8. We note that the At error is not strongly
dependent either on temperature or on lattice size. It is
very expensive in computer time to perform accurate A2
extrapolations on larger lattices, and the systematic error
will be buried in the statistical error unless very long
runs are performed. Based on the results in Fig. 2 and
similar results for Cj/, ./, we estimate that finite A7
(=0.167 in this case) increases our measured magnetic
properties by about 5% for the case U =4, and thus we
will use this to correct our final estimates for the long-
range order. Our statistical error should be much larger
than any residual systematic error. Similar estimates
yield a correction of 8% for U =2, Ar=0.25, and 2% for
U=38, Ar=0.125.

To further convince ourselves that the results of Fig. 1
are close to ground-state values at the lowest tempera-
tures it is desirable to have a theoretical model that fits
the data and can carry us to much lower temperatures.
As there is spin rotational invariance for any U and a
gap for charge excitations, we would expect spin waves
to be the dominant low-lying excitations (except perhaps
for very small U) that determine the low-temperature
properties of the system. Recently, Arovas and Auer-
bach® (AA) have shown how to obtain magnetic correla-
tions for the two-dimensional Heisenberg model at finite
temperatures within spin-wave theory. The spin-wave
dispersion relation within their mean-field theory is given
by

e =V2c(1 =0y, (4a)
with
7x = ¥ (cosk, +cosk,) . (4b)

n— 1 as T— 0, and at finite-temperatures it generates a
gap for the low-lying excitations that destroys the mag-
netic long-range order. The value of 7 is determined by
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FIG. 2. At dependence of the q=(x,7) magnetic structure
factor for U =4 and temperatures 8=2, 4, and 8 on (a) 4x4
and (b) 2x2 lattices. The points for Az=0 on (b) are results
of exact diagonalization, the straight lines are least-squares fits
to the data.
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the mean-field constraint equation®
coth ¥+ Bex

and the spin structure factor at wave vector (m,7z) is

given by

=1
2—N; (5)

(6)

Equation (6) is obtained from the expressions for the
spin-spin correlations given by AA normalized so that
the “local moment” (c2(R))=1. In the Hubbard mod-
el, it is reasonable to scale the spin correlation functions
by a factor that takes into account the reduction in the
local spin by charge fluctuations, and we write

S(n‘) =mL2SAA(7r). (7)

It would seem natural to take m/ to equal the squared
local moment ((n;; —n;,)?). However, we find that such
a choice in general does not fit the Monte Carlo data.
Thus, we take both m/ and the spin-wave velocity ¢ as
adjustable parameters.

The solid lines in Fig. 1 show the spin-wave fit to our
data. For the case U =4, the best fit is obtained with a
spin-wave velocity ¢==0.49 and squared effective local
moment m7=0.62. The on-site local moment is {(r;
—n;,)%) =0.78 for this case. The reason the effective lo-
cal moment is smaller is that charge fluctuations
suppress more effectively long-range spin correlations
than on-site spin correlations. As U-— oo, both the
effective local moment and the on-site local moment ap-
proach unity.

For U =2, there is no unique choice of ¢ and m; that
gives reasonable fits for the three lattices studied: ¢ has
to be taken smaller in the 8 X8 lattice, and m, larger in
the 4x4 lattice. Presumably, large charge fluctuations
make the simple spin-wave fit not very good in this case.
Still, the fit is useful in allowing us to estimate the error
introduced by finite temperatures.

A consistency check as well as another estimate of the
spin-wave velocity can be obtained from studying the

TABLE 1. Estimates of the squared effective local moment
m# [Eq. (7)] and spin-wave velocity ¢ that give the best fit to
the Monte Carlo data. The squared local moment obtained
from Monte Carlo simulations is m7~0.67, 0.78, and 0.90 for
U =2, 4, and 8, respectively.

mf

c
[From S(x)]

c
(From energy)

=
I
&}

0.43(2) (4x4)
0.38(2) (6x6)
0.36(2) (8x8)
0.62(2)
0.79(10)

o
41

0.28(4) (4x4)
0.28(4) (6x6)
0.23(3) (8x8)
0.49(4)
0.71(14)

0.32(4) (4x4)
0.35(4) (6x6)
0.32(4) (8x8)
0.57(5)
0.64(7)
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temperature dependence of the energy at low tempera-
tures. The Monte Carlo results are found* to be well
fitted by the form

€k

—t LYk
E=et+ 2 . (8)

k e
with €y a (lattice dependent) adjustable parameter, e
given by Eq. (4a), and ¢ adjusted to give the best agree-
ment. Again for U =2 a slightly better fit can be ob-
tained by taking different ¢’s on different size lattices.
The values of ¢ obtained this way are slightly larger than
the ones that give the best fit for the magnetic structure
factor but have the same qualitative trend (i.e., increas-
ing with U). Table I summarizes our results for m; and
¢, with the error bars a rough estimate of the range of
parameters that give a reasonable fit to the Monte Carlo
data.

In Fig. 3 we show the extrapolation for the magnetic
long-range order. We plot the low-temperature limit of
S(x)/N and Cp/2.1/2 vs 1/~/N. For U =8, the results for
Cy/2../2 have too large a statistical error to be useful and
are not shown. According to spin-wave theory, the
points plotted should lie approximately on a straight
line.® We find this to be the case (within error) for
U =4 and 8 but not for U=2. We attribute this devia-
tion to the fact that short-distance charge fluctuations
are masking the spin-wave behavior in the smallest lat-
tice for U =2. Thus, we used only the 6X6 and 88 lat-
tices for extrapolation in that case. Note that the up-
ward curvature for both S(x)/N and Cr/z1/2 for U=2
leaves no doubt that they extrapolate to a finite value of
m2. Both quantities give approximately the same esti-
mate f7'or the long-range order for U =2 as well as for
U=4.

The inset in Fig. 3 shows the antiferromagnetic long-
range order m =(3m2) '/, with m? the extrapolated or-
dinates, versus U. The values obtained are m =0.25(5),
0.39(5), and 0.44(10) for U=2, 4, and 8, respectively.
The short-dashed line labeled SW is the spin-wave esti-
mate m =0.606 2 in the limit U — oo, which is believed
to be close to the true value.” We also show the Har-

/N

FIG. 3. Extrapolation of magnetic long-range order mJ.
S(x)/N (filled circles, solid lines) and Cr/2../2 (open circles,
dashed lines) are plotted vs 1/J1V, N is the number of lattice
points. Inset: The extrapolated long-range order m=+3m;,
the Hartree-Fock prediction (dashed line), the 7 =0 spin-wave
prediction for the Heisenberg model (short-dashed line), and
the product of Hartree-Fock and spin-wave results (solid line).

tree-Fock prediction (dashed line), and the product of
the Hartree-Fock values with the spin-wave estimate
(solid line). It can be seen that the Hartree-Fock re-
sults, which account for charge fluctuations, corrected
for zero-point fluctuations by the spin-wave result, give
reasonable agreement with our numerical estimates.
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FIG. 4. Magnetic structure factor at wave vector q=(rz,7) vs band filling for U =4, with 4x4, 6x6, and 8x8 lattices at various
temperatures. The numbers next to the curves indicate B, the curves are drawn through the points to guide the eye.
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We now discuss briefly the magnetic behavior of the
system under doping. It was observed in Ref. 2 that an-
tiferromagnetic correlations are suppressed extremely
rapidly with doping, and conjectured that the antiferro-
magnetic order disappears immediately away from half
filling. We present here some further evidence in sup-
port of this conjecture. Figure 4 shows the magnetic
structure factor versus band filling for U =4, lattices of
size 4x4, 6x6, and 8x8 and various temperatures. Un-
fortunately, away from half-filling negative signs in the
fermion determinants prevent us from carrying out simu-
lations beyond =6 (except for the 4x4 lattice where
B =8 can be reached) in a range of band filling close to
1. Nevertheless, Fig. 4 shows that the suppression of
S(r) as p deviates from 1 becomes sharper as T— 0 and
N— oo, suggesting that no long-range order exists ex-
cept for p=1. As a further argument, we remark that to
have finite long-range order, the quantity S(z)/~/N
should be an increasing function of /V; in the range of
parameters shown in Fig. 4, this is not the case except
for p> 0.98. Of course, in a real material other effects
not included here, like anisotropy or a three-dimensional
coupling, could easily stabilize long-range antiferromag-
netic order in a finite range around the half-filled band
case.

In summary, we have presented results of Monte Car-
lo simulations of the two-dimensional Hubbard model
that demonstrate that long-range antiferromagnetic or-
der exists down to the smallest U studied (U =2), and
suggest that it exists for arbitrary nonzero U. We also
obtained estimates for the long-range order and spin-
wave velocity as functions of U. Our results for the
long-range order are consistent with the Hartree-Fock
results corrected by zero-point spin fluctuations as de-
scribed by spin-wave theory. We found the spin-wave
velocity to decrease as U decreases in the parameter
range studied, evidently because charge fluctuations are
weakening the effective exchange (for sufficiently large
U, c should of course increase with decreasing U).'° A
more detailed discussion of our results, particularly away
from half filling, and implications of our results for
theoretical models such as resonating-valence-bond
theory'! and spin bags'? will be presented in a separate
publication.
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Note added.— For the Heisenberg model we have re-
cently found that the Arovas-Auerbach mean-field
theory or a closely related sublattice-symmetric spin-
wave theory yield the exact spin-spin correlations to
better than 1% for the lattices studied here (J.E. Hirsch
and S. Tang, University of California at San Diego pre-
print).
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