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Persistent Currents in Mesoscopic Rings and Cylinders

Ho-Fai Cheung and Eberhard K. Riedel
Department of Physics, University of Washington, Seattle, Washington 98195, ' and

Dipartimento di Fisica, Universl'. ta di Roma "La Sapienza, " I-00185 Roma, Italy

Yuval Gefen
Department of Nuclear Physics, The Weizmann Institute of Science,

Rehovot 76100, Israel
(Received 15 August 1988)

Persistent currents in multichannel normal-metal rings threaded by a magnetic flux are treated by a
Green s-function approach. The diftusive region is analyzed in detail and the typical current predicted
as a function of disorder, temperature, and number of channels. The amplitude and temperature sensi-
tivity of the effect are found to be governed by correlations in the energy spectrum of the ring, of range
E, proportional to the Thouless energy. The results are relevant to persistent-current experiments in
mesoscopic metal rings.
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The intriguing question of persistent currents in
normal-metal rings enclosing a magnetic Aux was first
discussed in the 1960's. ' The work by Buttiker, Imry,
and Landauer in 1983, predicting persistent currents in
one-dimensional disordered loops, renewed the interest in
the topic. This interest is heightened by recent ad-
vances in submicrometer physics' that have brought the
effect into reach of experimental investigation. The cru-
cial question is, how disruptive are disorder and tempera-
ture to persistent currents in real normal-metal rings? Is
the effect big enou. gh to be of interest? The question is
addressed here from the viewpoint of mesoscopic phe-
nomena' ' ' with use of a new Green's-function ap-
proach.

We review some basic properties. ' The electron
eigenenergies E„of a ring that encloses an area of mag-
netic flux p are periodic functions of p with period
pp =bc/e. An electron in a state E„carries a current I„
that can be calculated from I„=—cdE„/'dt/t. The total
current is the sum over the contributions I„of all states
weighted with the appropriate occupation probability
I=+„f(E„)I„.The long-time average of the total cur-
rent is a property of the thermodynamic state of the sys-
tem and hence does not decay. It is periodic in the flux
with period tip. The effect requires phase coherence of
the electron wave function around the ring. A sizable
current exists only for rings of small size. For example,
the maximal current amplitudes for free electrons in per-
fect one-dimensional loops and thin-walled (short)
cylinders of circumference L are Ip=euF/L and M't Ip,
respectively, where M denotes the number of transverse
channels. The characteristic temperature separating
low- and high-temperature behavior is, in both cases,
kttT* =At/2tr, where ht =2ttAvF/L is the one-channel
level spacing at the Fermi surface. At first sight, this
result is surprising because the level spacing in M-
channel rings is much smaller, namely, AM tLAi/M. The
explanation is that strong level correlations exist in the

energy spectrum, which for perfect M-channel rings are
of range Mh. ~.

The details of the persistent-current behavior depend
on the relative magnitudes of various lengths and ener-
gies. We consider only short three-dimensional cylin-
ders, for which the circumference I is much larger than
the length L~ and wall width L„L&&L~,L, . The number
of transverse channels is M=AkF/4tr, where & =LyL, .
We focus on the regime of diffusive electron transport
defined by l, ~

& L & g, in terms of the elastic mean free
path l, ~

and localization length g. For an M-channel
cylinder, (tx:Ml, ~. Ballistic and strongly localized be-
havior occur for L & l, ~

and L ) g, respectively. We re-
strict the discussion to the mesoscopic region L l~,
where l~ is the phase coherence length of the electron.
For convenience, we assume that the electrons in the
cylinder move in a field-free space and that the self-
inductance of the ring is zero. Our calculations are for
free-electron and tight-binding models.

Our principal finding is that, for the diffusive regime
of metal rings, both the amplitude of the persistent
current at T =0 and its temperature sensitivity are deter-
mined by correlations in the energy spectrum, of range
E, =tr A,D/L . We find it instructive to express E, as
E, tx'M, tr&M tx: htl, ~/L, in terms of the level spacing, AM,
and the number of active channels as function of disor-
der, ' M, tt=Ml, ~/L. (Roughly, M, tr changes from M to
order 1 over the difl'usive regime, l, ~

& L & g. ) Note that
E, is also proportional to the Thouless energy VTh,

' and
determines the range of correlations in the conductance
correlation function. ' This result places the persistent-
current problem into close context with the problems of
Aharonov-Bohm and conductance fluctuations in wires
and rings studied previously. ' '' For the observability
of persistent currents in normal-metal rings, it is
significant that characteristic energy is E„rather than
the much smaller h, M.

Specifically we find the following: (i) The amplitude
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of the persistent current is determined by the root-
mean-square (rms) current (I )'l, which we call typical
current. Averages are over disorder configurations.
(I )'l is proportional to l, i/L as a function of disorder,
and is independent of the number of channels. In con-
trast, the average current amplitude falls off exponential-
ly with disorder, as exp( L/—21,i), but increases as M'l
with channel number. The sign of the average current is
practically random for different microscopic configura-
tions of disorder. Such large fluctuations are charac-
teristic of mesoscopic phenomena. (ii) At finite temper-
atures, the value of the thermal diffusion length
lT=(2~AD/ksT)' determines the crossover from low-
(L & lT) to high- (L & lT) temperature behavior of the
typical persistent current. The corresponding charac-
teristic energy is E, =sr hD/L . When kqT & E„ the
amplitude of the typical current is reduced by
exp[ —const(k i'/E, )'l ]. (iii) The typical single-level
current decreases with increasing number of channels M.
Correlations in the energy spectrum over E, are such
that the ratio of the typical total and single-level currents
is proportional to M,'ir. (iv) For a given microscopic
configuration of disorder, the total persistent current
It,t,. i as function of chemical potential p changes sign
with average period E„with Auctuations in the period of
order of its size. This also implies that the range of
correlations in the current-current correlation function is

E,. The traces of Ii„.,i vs p are "sample specific. " (v)
The typical total and single-level currents measure the
sensitivity of the system to changes in the boundary con-
ditions. Therefore, our results allow inferences about the
Thouless formula for the conductivity. ' In the follow-
ing we derive these results.

We express the persistent current in terms of Green's
functions. This facilitates the process of our taking en-
semble averages over disorder. Our new formula for the
persistent current is

I =) g f(E) [G+(k, k, E) —G (k, k, E)]II,
2zl

Here k labels the discrete eigenstates of the perfect sys-
tem (in the absence of disorder), Ii( ) are the associated
single-level currents, G — denote the advanced and re-
tarded one-particle Green's function, and f(E) is the
Fermi-Dirac distribution. Equation (1) is easily derived.
Expand the eigenstates of the disordered ring in terms of
those of the perfect ring yi, , y„=deka„i, yi, Since th. e
current operator is diagonal in the unperturbed basis, the
single-level currents I„can be expressed as a sum over
the Ii, , I„=gk i a„p i Ii, , where

i a„k i is the probabil-
ity of overlap between the states y, and |tran . The total
current is the sum over the contributions I„of all states
y„weighted with the occupation probability f(E). The
one-particle Green's function of a finite-sized ring is
G(k, k';E) =g„a„l,a„*q /(E E„), with a discre—te spec-

8

3d7, 2

]/2 '
lei . 2x

Ipsin +higher harmonics.
L Pp

There is no dependence on the number of channels and
no significant (e.g. , oscillatory) dependence on chemical
potential. The current amplitude can also be written as
the product of the conductance g/(2e /h ) =4M, s/3
times the inverse density of states at the Fermi surface,

We note, in the energy integral leading to (2) ap-
pears an exponential factor that effectively cuts off the
integral of E,, or M,g levels, below the Fermi surface.

trum. Expressing the overlap probabilities
i a„k i in

terms of the residues of G, one obtains (1). Formula (1)
holds for one microscopic configuration of disorder. The
calculation of the (disorder) average current (I) and the
rms(I) =(I ) 'l, therefore, requires as input the disorder
averaged one- and two-particle Green's functions,
(G(k, k;E)) and (G(k, k;E)G(k', k';E')), respectively.

Consider the structure of Eq. (1). The system geo-
metry and Aux enter the calculation through II, and k.
The latter index labels the discrete eigenstates of the per-
fect system, e.g. , for free electrons in a thin-walled
cylinder k, =2~(n+ p/pp)/L, k~ =~m/L~, and k, = zm'/
L„with n =0, ~ 1, ~ 2, . . . and m, m'=1, 2, . . . . ' The
effects due to disorder and corresponding length and en-
ergy scales enter via the pole structure of (G) and (GG).
It is possible to replace the latter averages by their stan-
dard bulk forms (except for the discrete label k). We
approximate (G —) = 1/(E —Ek +. iB). ' Then ( i a„k i )
has Lorentzian form with width B and height hM/xB.
We find that to obtain the dominant contributions to the
typical current, (GG) can be approximated by
(G) (E)(G) . The leading contributions are due to the
diffusion and Cooperon poles in (K+ ) and (E +), such
as

zef i Vk /&' i /[ —(i/h ) (E —E') +D (k T k') ']
for small energies and momenta. ' Diagrammatically,
both the ladder and maximally crossed diagrams are in-
cluded. In terms of z, i or l,i=vFz, i, the broadening 8
and diffusion constant D are given by B =h, /2z, l and
D = vF z, i/d, respectively. Note that in dimensionless
units 2mB/hi =L/2l, i and 2z kg T/hi =T/T* with
k8 T* =51/2x . To leading order, L/2l, i and T/T*
determine the amplitude of the average current, cf. Eq.
(4). The poles jn (E+ ) introduce the characteristic
energy E, =+~AD/L . In dimensionless units

E,/pl cx l J/L and [kgT/(2~AD/L )] ' =L/lT, where
lT=(2xhD/ksT)' . To leading order, l,i/L and L/IT
determine the amplitude of the typical current, cf. Eqs.
(2) and (3).

Our results and conclusions are as follows. For a
single-ring experiment, the typical current is given by
(I )'l . When l,i«L (g, it exhibits power-law behavior
as function of disorder, l,i/L. At T =0,
(I2) 1/2
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This looks as if the last M, tr levels determine the sign and magnitude of the total current. At temperatures kgT & E,
(or L & /T), but keT«B, there are two regions of slightly diAerent temperature behavior. In the first (L & /T, L~//T,
and L, //T),

( 2) )tp ~ 16'
3d

J /2
Iei

' 3/2I.
lT

exp

r

trL . 2'(t
Io sin +higher harmonics .

/T Wo

(3)

(I)=—2 M
L//, )

L . 2tr
sin +higher harmonics .

2~ei 0o

While for higher temperatures, when L«L~//T and/or L&&L, //T, the prefactor should be multiplied by I2L~/

(L/T ) 't ] 't and/or [2L,/(L/T ) 't ] 't, respectively.
The amplitude of the average current (I) decreases exponentially with disorder and it increases with the number of

channels M. For /, 1 & L, at T =0,
r i 1/2

Ioexp (4)

At T & T*, this expression is multiplied by 2T/T* and

the L//, ~
are replaced by L//, ~+2T/T*. Note that the

energy scale is 5,
&

for both the disorder and temperature
dependences. The higher harmonics are reduced by cor-
respondingly higher powers of the exponential factors.
The total average current exhibits oscillatory dependence
on the chemical potential with period A~. The result (4)
is the rms amplitude of this fluctuation. The current am-

plitude in (4) is proportional to the probability ampli-
tude that the electron is not scattered while traversing
the ring once. For a two-dimensional cylinder, the ex-
ponent of the /, ~/L prefactor is —,

' .
The amplitude of the typical single-level current

(I„)'t decreases with increasing number of channels M.
By choosing a contour in the energy integrals that en-

closes on average only one state, we find, e.g. , at

y/yo =0.25,

(I2) 1/2 (5)
6ML

In contrast to (I )', the single-level current depends

only weakly on p with a typical amplitude given by (5).
The typical single-level current can also be expressed in

terms of the total average transmission amplitude be-
tween any two channels, (I„)'t ee (

~ t;J (E„)
~

) ' Io.
The ratio between the typical total and single-level

currents is proportional to M~~ir, as implied by (2) and

(5). Numerical data for small two-dimensional cylinders
are consistent with this result. It may suggest the inter-

pretation that the typical total current is the rms super-

position of M, ff typical single-level currents.
From the results for the currents we infer information

about the energy spectrum and correlations. Consider
the total current I«i, l for a short cylinder with a axed
microscopic configuration of disorder. Our results for
the properties of the typical current suggest strongly that
It,t, ~

exhibits sign changes with an average period

E, ~MdrhM eel ~/, ~//L, with fiuctuations in the period of
the order of its size. In other words, each sample exhib-
its a sample-specific, aperiodic trace of It,t, ~ vs p. This
in turn implies strong correlations among the slopes of
the energy levels E„(p), to make possible this oscillation.

One indication in support of the conjecture comes from
the high-temperature properties of the typical current,
Eq. (3). The result expl —const(king T/E, ) 't ] implies
that groups of single-level currents with alternating sign
are separated at a scale of E, and that this separation
fluctuates as a function of p and from sample to sample.
Note also that a change in p by E, causes a phase
change of z in a typical wave function along a diA'usive

path around the ring, SkFvFrD =tr. (For a perfect ring,

Ii,ig oscillates with period At. ) We see the aperiodic os-

cillations of the total current numerically in small sam-

ples.
We comment on the Thouless formula for the conduc-

tance. The typical currents, being related to the deriva-

tive of the energy with respect to flux, are a measure of
the sensitivity of the eigenstates of the system to changes
in the boundary conditions. Using AE =go BE„/Bp as the
definition of the boundary sensitivity of the eigenstates,
we deduce from Eq. (5) that Gee (AE/hM), previously
derived' in one dimension. Defining alternatively the
flux sensitivity in terms of that of the total energy,
hE =poBE/B&, we conclude from Eq. (2) that then the
conductance formula has power one, G cx: hE/AM.

There are many crossover phenomena that can be
studied within this framework. (i) Geometrical cross-
over to thin-walled long cylinders (L«L~). We find an

enhancement of the amplitudes in (2), (3), and (4) by
factors proportional to (L~/L) 't, as a result of addition-
al correlations. The same was found for currents in per-
fect long cylinders. (ii) Crossover to the strongly local-
ized regime. In the strongly localized regime, g & L, we

find (I )'t ~IoM 'exp( —L/2g), as expected because
there the overlap of the wave functions around the ring is

exponentially small. (iii) Crossover to very high-
temperature behavior for (I ) 't . The temperature
corrections in Eq. (3) are for moderate temperatures. At
ktiT» II (or /T« /, ~) another crossover occurs to tem-

perature behavior proportional to exp( —T/T*). We
find this result also in simulations.

The formulas oA'er guidance for the optimal choice of
parameters to observe persistent currents. Here, we
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dealt with small metal rings, for which M is large. (The
case of small M can be realized by use of small semicon-
ductor rings. ) The size of the persistent current depends
crucially on a favorable ratio of L,t/L. Equations (2)
and (3) hold deep in the diffusive regime. At weaker
disorder in the diffusive regime, also M dependence
comes to bear and the typical current is larger than pre-
dicted by (2) and (3). Then one may use (4) to estimate
a lower bound to the typical current. The temperature
requirements, namely to satisfy lT & I (or kttT(E, )
and to assure large phase coherence lengths l~, seem to
be compatible. For a metal ring (kF = 1.2X10' m

e.g. , Au or Cu) of L =-1 pm and Lyi, =0.02X0.02 pm,
one finds M =0.5&10, I0=0.2 pA, and T*=3 K.
The following estimates are for Ilux tt/go=0. 25 and con-
tain a factor 2 for spin. Assuming a large l,~=0.1 pm
(0.2 pm), one obtains for the typical current from Eq.
(4) a lower bound 0.04 pA (0.7 pA), while Eq. (2)
yields the estimates 0.01 pA (0.03 pA), which are too
low as expected. Deep in the diAusive region, if we as-
sume /, ~=0.02 pm, Eq. (2) yields an estimate of 3 nA.
For the latter case, trL/IT ~ I requires temperatures
T ~50 mK. For experiments that use an ensemble of
many macroscopically identical rings, each ring carries a
current of average magnitude (I )' and random sign.
Period halving is not expected.

Several efI'ects neglected in the above analysis may
make it more dificult to observe the persistent current.
The magnetic field penetrating the ring will smear out
the perfect po periodicity, depending on the aspect ratio
of the ring and the strength of the field. Finite phase
coherence l~ ( e.g., because of inelastic scattering and
magnetic impurities) reduces the amplitude of the eA'ect.

Self-inductance eAects are small due to the small size of
the currents. The question of thermal noise in the ring
needs further study.

In conclusion, we have presented a detailed analysis of
the persistent current in multichannel normal-metal
rings in the diff'usive region of electronic transport. We
expect the leading dependences on the dimensionless pa-
rameters l,~/L, L/lT, M', L/2l, ~, and T/T* to be model
independent, but not the coefticients. Long cylinders, not
discussed here in detail, offer a further enhancement of
the current.
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