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Complex Classical and Quantum Scattering Dynamics and the Quantum Hall Eff'ect
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The eA'ect of a magnetic field on potential scattering is investigated microscopically. Analytic, exact
renormalization-group, and numerical solutions show that the classical scattering dynamics of a charged
particle is extremely complex. In one case, the dynamics is described by a discontinuous one-dimen-
sional Hamiltonian map. Preliminary results indicate complex quantum dynamics as well. Conse-
quences include an explanation of the observed breakdown of the quantum Hall effect at large currents
and possible 1/f noise.

PACS numbers: 72.20.My, 05.45.+b, 72.70.+m, 73.40.Gk

The quantum Hall eAect describes the transport of
electrons in two dimensions in a magnetic field. ' One of
the most fundamental problems in the quantum Hall
effect (QHE) is how potential scattering occurs in a
magnetic field. This process is described by a scattering
matrix (y,«~S ~ y;„),and is not in general understood.
Much of the current understanding of the QHE is in the
regime where there are no extended states at the Fermi
level, so that dc transport, particularly the quantization
of the Hall conductivity o.„~,does not require knowledge
of the scattering matrix. Most properties, however, re-
quire a detailed understanding of the scattering process.
These properties include the normal and Hall conductivi-
ties o.„„oAof the quantized plateaus, at nonzero temper-
ature or frequency, Auctuations and noise, and the entire
nonlinear current-voltage characteristic.

Both classical and quantum scattering are considered
here. The classical case is investigated because it is
simpler and exact results are obtained that describe pre-
viously unsuspected complexity. The results have impli-
cations for higher Landau levels via the correspondence
principle, and apply qualitatively to lower Landau levels
as well. Both smooth and abrupt scattering potentials
(on the scale of the cyclotron orbit l, the magnetic
length) are experimentally relevant in the QHE.
Smooth potentials (

~
VV

~
l && hru, ) are better behaved.

This paper concentrates on abrupt potentials. There is
evidence that the qualitative features for abrupt poten-
tials are generic, and apply to all potentials except those
in the very smooth limit.

The Hamiltonian for an electron confined to the x-y
plane in a uniform magnetic field 8=V&A=Bz and
Hall electric field E =Ey, with scattering potential V(r),
1S

The particle generally makes several orbits around the
scatterer. The center of the cyclotron orbit (guiding
center) has a different final y coordinate than its initial y
coordinate. Neither feature is found for smooth poten-
tials.

One of the simplest scattering potentials is a hard
finite horizontal wall (perpendicular to E), with no
thickness in the y direction. The horizontal wall is a
one dimensio-nal Hamiltonian map (re~ and the y
guiding-center coordinate are constant). The perimeter
is parametrized by x C [0,1] [Fig. 1(b)]. In these units
the diameter of the cyclotron orbit is a, and the amount
by which the orbit translates in one period, which is pro-
portional to E, is 2P. There is also an initial condition,
the angle 8 6 [0,2rr] at which the particle begins with its
guiding center a specified distance from the barrier. The
guiding center has the same y coordinate as the barrier
(a different y coordinate can be mapped onto a problem
where y is the same).

A particle coming from —~ first collides in the inter-
val [0,2P], and makes its last collision on top in Ii
—= [ &

—a —P, —,
' ]. The particle escapes to +~ if it col-

lides in the subinterval [ —,
' —2P, —,

' ]. Otherwise it wraps

2

0= p—1 eA
2m c

+eEy + V(r) . (b)

If V(r) changes discontinuously on a closed curve, the
classical Hamiltonian flow can be represented by a two-
dimensional map g. Successive collision points and col-
lision angles are given by (xj.+&, re~+&) =g(x~, rtij). Typi-
cal classical scattering dynamics is shown in Fig. 1(a).

1.0 0.5

FIG. 1. The classical scattering of a charged particle from
infinitely repulsive barriers calculated numerically for (a) a
square barrier and (b) a horizontal wall.
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g(x)

FIG. 2. The map g(x) for a=0.2 and P=0.05 is given by
the heavy lines of slope ~ l. Points x C [0.4,0.5] escape.

around to the bottom [shown in Fig. 1(b)], and eventual-

ly wraps back to the top. The map g(x) describing this
physical scattering process is discontinuous, with slope
everywhere +' 1 by Liouville's theorem (Fig. 2):

x+a+p, x E [0, —,
' —a —p],

I —x —2P, x E [ —,
' —a —P, —,

' —2P],

g(x) ='+~,
x+a —P, x 6 [2, 1

—a+P],
1
—x+2P, x E [1 —a+P, 1] .

(2)

Attention is restricted to a+ p & —, and 0 & p & a.
The number of collisions N can be calculated numeri-

cally as a function of r =a+p, s —=a ——p, and the initial

angle 0. Figure 3 plots N(r, s), the maximum number of
collisions over all 0 for a given (r, s), on a typical section.
All peaks actually extend upward to infinity, and appear
finite only because of numerical sampling. N contains
infinite sets of divergences that accumulate at points
such as r =0.35. Divergences result because infinite
periodic trajectories exist. [A periodic trajectory resem-
bles Fig. 1(b) with the incoming piece removed, and the
trajectory on the bottom wrapping around to join the one
on top. ] One can prove, however, that a scattering state
(one beginning at —ee) can never be caught in a period-
ic trajectory. The divergences occur when the parame-
ters are mistuned by an amount g from those resulting in
exact periodicity. As q~ 0, one can show that long tra-
jectories occur with N —g, but that the initial 0 must
fall in an interval of O(tI) to become caught in a long
trajectory. As shown below, there are also infinite
quasiperiodic trajectories. The isolated divergences in
Fig. 3 are trajectories that approach periodic orbits. The
accumulation points are due to quasiperiodic orbits.

The set of points (r, s ) in the two-dimensional pa-
rameter space at which infinite trajectories exist is
displayed in Fig. 4. In spite of the set's complexity, most
of it can be described analytically. An exact renorm-
alization-group (RG) transformation is defined by the
choice of a subinterval [yl, yq] e [0, 1]. The renormal-
ized map f=R(g) is the first return map on the subin-
terval [the first element of g(x), g(g(x)), . . . t«he su-
binterval]. The initial subinterval is I~ =[2 —r,
Figure 5 shows a return map f for I~i,t rescaled to unit
length. The interval I~ is regarded as periodic (the
points 0 and 1 are identified). The return map is a per-
mutation of the adjacent intervals [O,x 1] and [x|,xz] fol-
lowed by a rigid rotation, with points starting in [x2, 1]
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FIG. 3. The number of collisions N(r, s) on a logarithmic
scale as a function of r, with s fixed at 0.2.

FIG. 4. Parameters at which infinite trajectories occur. All
rational parameters of the form (r,s) =(ji/p, j2/p), p =2520,
are tested. Inset: the region P| (light shade), and part of P2
(dark shade).
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if xl &y & x2, and

6] —1
6] = modl,

X2
(4e)

f(x)

0
X)

x) x2 10

FIG. 5. A map f(x) for the interval I| is given by the heavy
lines of slope 1. Points in [x2, 1] escape. The RG restricts the
map to the subinterval [O,x2] (striped square). The subinterval
is considered periodic, with 0=1. Escape from the subinterval
occurs in [x2, 1]. The subinterval is then rotated so that 0 is on
the left, and lengths rescaled so that the new interval is one
unit long.

(x+61+x2)modl, x 6 [O,xil,
f(x) = ~ (x+Bi)mod], x e [xi,x2],

x c [x2, 1].
(3)

The initial parameters are x 1 = (s ——,
'

mdos )/r, x q

=s/r, and 6~ =(—xl —1/2r —s/r)modl.
The first renormalization is special in that it changes

the nature of the map (compare Figs. 2 and 5). The suc-
cessive renormalizations are defined by removing from
the domain and range of f(x) those points that immedi-
ately escape to infinity, leaving the interval [O, x21, as de-
scribed in Fig. 5. The renormalized function is given by
Eq. (3) with parameters x I, x2 and 8'i. Using y—:(x|+61)modl, one may show that the renormalized
parameters are

escaping. The map f is characterized by three parame-
ters, x], x2, and 6], all between 0 and 1:

if xq~y or y ~ x[.
The dynamics for any (r,s) is obtained by iteration of

the renormalization group until it reaches one of its two
fixed points. The first fixed point (xl, x2) =(0,0) indi-
cates that all trajectories escape to infinity. The second,
(xl, x2) =(0,1), describes a rigid rotation (with no es-
cape or permutation) on the renormalized interval. An
RG sequence that reaches the second fixed point indi-
cates that (r, s) is such that there are trajectories that
collide an infinite number of times with the barrier. Ra-
tional 6 corresponds to periodic orbits, and irrational 6
corresponds to quasiperiodic orbits.

An analytic solution can be given for the RG equa-
tions (4) when xl =0, so that the map describes rotation
with escape, rather than permutation followed by rota-
tion with escape. The parameter range P] in which the
first renormalized map R(f) is equivalent to rotation
with escape is an infinite set of triangles, which is a large
fraction of parameter space (Fig. 4, inset). In P~, the es-
cape width w and the rotation 6 are given by

w =min [p —(1+ I/2s )mod p, I ],
6[1/2s+ p

—( I + I/2s )modp] mod 1,
if —,

' modr ~ r —s, and

w =min [(I + I/2s )mod p, 1],

6[1/2s —(1+ I/2s )mod p] mod 1,

(sa)

(sb)

if ( —,
' r+s)modr —&r —s, where p=r/s. The analytic

description of the set (r, s ) in the region P~ is given
by (a) w =0, or (b) 6 =p/q is rational, with p and q rela-
tively prime, and w & 1/q. Case (a) corresponds to
quasiperiodic orbits and (b) corresponds to periodic or-
bits. The set of all quasiperiodic orbits in P] may be
written

(s+ —,
' )modr =0.

ll
xi =1+, x2 —2—

X2

if 1 —x2(y & xq,

X2

if x2~y,

x, —0, x, —
1 —y

X2

if y ~ 1 —x2 and y (X2,

6'] = 6]
X2

—1x] =0, x2 =min 1+,0
xp

(4a)

(4b)

(4c)

(4d)

One can analytically describe larger regions by defining
P2 in which R(R(f)) is rotation plus escape, etc. (Fig.
4). Quasiperiodic orbits along oblique lines [such as the
one connecting (0.25,0) and (0.5,0.5)] impale periodic
orbits occurring on rays from the origin. The extent of
the periodic intervals is a discontinuous function of the
ray angle.

The correspondence principle implies that the quan-
tum dynamics of an electron in a high Landau level n
will resemble the complex classical dynamics. Infinite
trapping times need not exist as in the classical case, but
long quantum trapping times and erratic phase shifts,
diverging as n ~, are expected. Preliminary numeri-
cal studies indicate that the qualitative aspects of the

581



VOLUME 62, NUMBER 5 PHYSICAL REVIEW LETTERS 30 JAGUAR+ 1989

classical dynamics apply to the low-Landau-level quan-
tum case as well. In particular, a wave packet splits at
the far edge of a scattering potential, with part of its am-
plitude escaping to +~ and part recirculating around
the potential. An electron can have a signif". cant ampli-
tude to scatter from an extended potential into a diAer-
ent Landau level (diA'erent y guiding center). Previous
simulations were not in the correct regime to observe this
efI'ect. The dynamics are due to high-order multiple
scattering (some trajectories in Fig. 3 interact with the
potential 10000 times), and are missed in single-
scattering approximations like the self-consistent Born
approximation.

If an electron encounters a succession of random
scattering centers, the parameters vary for each scatter-
er. The number of collisions, and hence the waiting time
near each scatterer, is a sensitive function of the parame-
ters with a broad (power-law) distribution of waiting
times (Fig. 3). This distribution typically results in 1/f
noise. Noise power with increasing amplitude at low
frequencies has been experimentally observed in the
quantum Hall regime.

When the electron drift velocity exceeds a critical ve-
locity v„it escapes from the upper edge of the scatterer,
systematically emerging with a larger y guiding-center
coordinate. This indicates the observed onset of o. , and
breakdown of the QHE at high currents. ' For a barrier
of extent L & / in the y direction, v, is reached when the
x guiding-center coordinate translates by more than a
cyclotron radius l in the time required to reach the top of

the barrier. The critical velocity is the order of l co, /L,
which is 1/L smaller than the Zener tunneling estimate.
The scatterer breaks translation invariance to allow tun-
neling to occur, and can cause tunneling to begin at a
lower velocity than the Zener estimate, as observed in ex-
periments.
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