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Existence of Anderson Localization of Classical Waves in a Random Two-Component Medium
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An exact mapping of the classical wave problem to that of electronic motion is utilized together with
extensive numerical results to examine the question of the existence of genuine localization (i.e., one
occurring when both components have real positive dielectric constants) of classical waves in random
binary alloys Ai —„B . We find that scalar waves do exhibit localization. We have also developed a
coherent potential approximation which for x &0.2 gives results not that much different from the nu-
merical ones. This result can be easily generalized to electromagnetic fields as well.

CO
V u+ au=0,

c 2

where c is the wave velocity for e =1 and e is the dielec-
tric constant which is a random variable.

In the corresponding electronic problem, the wave
equation is given by

V u (E —V)u =0,2 2m
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PACS numbers: 71.55.Jv, 41.10.Hv, 42.20.—y, 43.20.+g

Until recently, most of the work on localization has
been focused on electronic systems; however, within the
last three years the question of classical wave localiza-
tion (CWL) ' '' has received attention, partly because
the CWL oA'ers both the potential for a direct check of
localization theory as well as the possibility of other lo-
calization characteristics distinct from those of elec-
trons. ' Several successful experiments on the enhanced
coherent backscattering (a precursor of Anderson locali-
zation) of light have been reported. Strong localiza-
tion has not been observed yet. The theoretical re-
sults '' on the existence of CWL are still not definite,
since they are very sensitive to the various calculational
approximations. It is the purpose of this Letter to make
a quantitative analysis of the phenomena of CWL by a
random array of scatters. First, we make an exact map-
ping of the scalar localization problem to the electronic
one, which has been studied extensively within the last
ten years. The resulting picture gives clearly the range
of parameters most promising to search for Anderson lo-
calization in the CWL problem.

For the CWL problem, we consider a composite ma-
terial consisting of two components with dielectric con-
stants el and e2. We will only consider cases where e1
and e2 are ~'eal, i.e., cases where there is no absorption.
We also assume 0 & e& & e2, but we discuss brieAy what
happens when e~ becomes negative. The concentration
of the e~ component is 1 —X. The wave equation
satisfied by the scalar-wave amplitude u at frequency m

is given by

where E is the energy under consideration and V is the
random potential experienced by the electron. In analo-

gy with the CWL problem we have that V takes the
values E~ and Ett (E~ &Ett) with probabilities 1 —x
and x, respectively, and 6:—E& —E~.

in Fig. 1, the electronic behavior is summarized in the
energy-disorder plane. The 6 axis, E —E~ =0, repre-
sents the bottom of the spectrum of the pure A material;
for E —Ez & 0 both materials are locally of propagating
nature. The straight line OB, given by 8'= —(E E~)—
or, equivalently, by E =Ez, represents the bottom of the
pure-8 spectrum and the lower bound of the spectrum of
the composite random material, the so-called Lifshitz
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FIG. 1. Schematic diagram for a composite binary random
electronic system AI — 8„; E is the energy and B=E& —Ez
~ 0, where Eg (Ee) is the bottom of the spectrum of pure A
(8) material. The line OB corresponds to E =Ee. The expect-
ed mobility edge trajectory, separating localized states to its
left from extended states to its right, is also shown either for
x (x, (heavy solid line) or for x )x, (heavy dashed line); x,
is the critical percolation concentration for the B material.
The slope of the line OC equals p —1 and OCO determines

~
e/tcv'2, where p =e2/e~ (see text).
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limit; no states exist to the left of OB. For the points be-
tween OB and the 6 axis, the 2 material is locally of
nonpropagating nature, while 8 allows local propagation.
By comparing Eqs. (1) and (2), we see that cu e~/c and
cu el (p —1)/c corresponds to 2m (E E~ —)/ltt and
2mB/ft, respectively, where p =e2/el. Thus, every point
in the (ro, p) plane is mapped into a single point in the
(6,E —E~) plane and vice versa. In particular, we see,
by taking the quotient to eliminate co, that the lines of
constant p (and variable ro ) are mapped into the lines

~ =(t —1)(E—E, ), (3)
and the lines of constant co (and variable p) are mapped
into the lines E —E& =const. For an arbitrary point C in

the (E E~, 6) p—lane, the slope of OC gives p —1 and its
projection to the E —Ez axis OCo, gives f1 co e|/2mc
(see Fig. 1). In Fig. 1, we plot schematically the expect-
ed behavior of the mobility edge trajectory (MET). For
low 6, the M ET starts as E, —V——6', where
V=xE&+(I x)E—~ and E, is the mobility edge. For
very high 6 and for E between Ez and Ez, but not close
to them, the behavior of the system is expected to be as
in classical particle mechanics (because the wavelength
approaches zero). Thus the MET will stay either close
to the 6 axis, if x is less than x„or close to the line OB,
if x is larger than x„where x, is critical percolation con-
centration for the 8 component. The important question
is whether for some range of intermediate values of 6 the
MET crosses to the positive E —E~ semiplane, as shown
in Fig. 1. If this happens, we will have genuine CWL,
i.e., one occurring under conditions where both materials
allow local propagation (both eq and el positive). ' Un-
fortunately, all the numerical and analytical work up to
now' for finding the mobility edge in binary alloy disor-
dered systems has been done in simple lattice systems,
where the MET has no possibility to cross the 6 axis, un-
less it reaches the vicinity of an upper band edge. '

In the present work, we examine whether classical lo-
calization is possible without any help from a real or in-
cipient upper band edge. Thus, we work either in the
continuum with no correlations between A and 8, or in a
more complicated lattice near the lower band edge (and
far below the upper band edge), where the diA'erences
from the continuum are not so important.

Our model of the random continuum can be pictured
as follows: Space is divided into elementary identical po-
lyhedra (e.g. , dodecahedra), each one of volume 4tra /3,
which are filled randomly either by A with probability
1 —x or by 8 with probability x. In the calculation of
scattering cross sections, the polyhedron is replaced by a
sphere of radius a. In the lattice approximating the con-
tinuum (which was chosen for simplicity as simple cu-
bic), we employ for the electronic problem a one orbital
per site tight-binding Hamiltoriian of the form

H=Z In)~. (~ I+Et. In)(mI,
n n, m

where t„ is t for n, m nearest neighbors and zero other-
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I IG. 2. Mobility edge trajectory obtained from numerical
results (solid line) and CPA results (dashed line) for the scalar
case with x =0.10. Inset: The CPA mobility edge trajectory
for the electromagnetic wave case for x=0.1. The units of 6
and E —Ez are equal to 6 /2ma 2. The accuracy of the
correspondence of our tight-binding model with the continuum
model breaks down for 6 & 10 (solid line).

wise. In setting up an approximate correspondence be-
tween this lattice model and the random continuum, the
elementary polyhedra are taken to be cubes of volume
L . Within each elementary cube, all e„'s are either t.z
with probability 1

—x or e~ with probability x. (Ez(z)
corresponds to e~(~) —6It I.) The more lattice points
are within each elementary cube, the better our lattice
approximates the continuum. We have used L=2, 3,
and 4 times the lattice spacing corresponding to 8, 27,
and 64 lattice points within each elementary cube. To
determine the mobility edge trajectory in this 3D tight-
binding model, we use the transfer-matrix method. ' '
This is the most reliable technique in obtaining quantita-
tive results' ' in the problem of Anderson localization
in disordered systems. In the transfer-matrix method,
one considers cylinders of square cross section M made
from our random lattice model. For each cylinder of
length N, one determines numerically the largest locali-
zation length kM as N~ ~. At the mobility edge' '
A,~/M=0. 6, while for extended (localized) states X~/M
vs M increases (decreases), respectively, with increasing
M. For our studies here, we have used M=9, 12 for
L =3, M=8, 10, 12 for L =2, and M=12 for L =4, and
N up to 6000. Most of our data were obtained for L =3,
M =9, N =6000. The mobility edge trajectory was
determined with the criterion X~/M & 0.6 or (0.6 for
extended or localized states, respectively. Our numerical
results for the MET are shown in Fig. 2 for x =0.10
(solid line). The MET crosses to the positive E —E~
semiplane twice showing that classical wave localization
occurs in our lattice model although under rather severe
conditions. Indeed, it follows from the data in Fig. 2 and
Eq. (3) that in order to have classical wave localization

p = Ep/E~ must exceed 14+ 2 and the dimensionless fre-
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quency ~e& cuba/c must be around the value 2.2/(p—1) 'l (0.65. According to our data in Fig. 2, classical
wave localization will also appear between the upper

crossings of the MET which correspond to Je~coa/c be-
ing around the value 3.2/(p —1) 'l; however, this higher
localized band will appear only when p & 45. To make
sure that the crossings shown in Fig. 2 are not artifacts
associated with the discrete nature of our lattice model,
we have done calculations not only for L=3, but for
L =4. The rich structure shown in Fig. 2 remains for the
L =4 case, although the first localized frequency band is
moved up a little and centered around 2.4/(p —1) '~ .
The minimum value of p is again 14 ~ 2. We have also
checked our M=9 results by repeating the calculations
for M=12; no significant variations were found.

The crossings of the MET to the right of the E =E~
line are associated with resonances in the scattering cross
section by a B cube of volume L embedded in the aver-
age material. We have verified this by correlating the
values of 6 for which a new bound level appears to the
values where the MET exhibits its pronounced structure.

We have tried to determine the optimum value of x for
classical wave localization. We have found that for
x =25%, there is no crossing of the MET with the 6 axis,
and therefore no classical localization. It seems that the
optimum value of x is about 0.13~0.03, which means
that the average thickness of the A material between the
B cubes equals their size.

It must be pointed out that our lattice model does not
possess sharp boundaries between A and B regions (be-
cause of the finite lattice spacing). As a result, localiza-
tion can be expected to set in for our model at higher
values of p than for the continuum. Moreover, at small-
er x the B clusters have in our model a range of shapes
which smears out the resonance, again requiring higher
dielectric contrast for localization than in the continuum.
Finally, at a larger x, the B channel is smoother in our
model than in the continuum, once again requiring
higher p for localization. These two latter efI'ects lower
the optimum value of x in our model below that for
spheres in the continuum. For these reasons, we con-
clude that our numerical results provide for the first time
reliable evidence that genuine classical localization does
indeed occur.

In addition to our reliable numerical approach, we
have studied the problem by employing the potential-
well analogy (PWA)' together with a simple coherent
potential approximation (CPA). ' The latter replaces
the composite random system by an homogeneous
effective medium characterized by an energy-dependent
complex self-energy Z(E). We determine Z(E) either by
demanding that (f(0)) =0, where (f(0)) is the average
forward-scattering amplitude, ' or from the condition
that the total cross section is zero. The scattering is
due to the replacement of the eA'ective medium within a
polyhedron by either A or B. To solve the equation

(f(0))=0 we transform it to an iterative equation of the
form q„+~ =q„+A(f(0;q„)), where q„=(E—Z„)2m/
6 ] 'l, n is the order of the iteration, and A is chosen us-
ing the weak scattering limit and demanding as good a
convergence as possible. We have used 2= —3/8xq„.
After a successful convergence of q, which implies
(f(0;q)) =0, the mean free path l=0.5/Im(q) and the
renormalized wave vector k =Re(q) are determined. In
the PWA formalism, ' there is a mobility edge where
kl=0.84. Using the above method, we calculated the
MET for the scalar as well as the vector electromagnetic
(EM) wave equation in 3D. We have found that the
CPA based on equating the total cross section to zero
converges faster than the one that puts the forward-
scattering amplitude equal to zero. Both conditions give
very similar results for q when x is not very large or
when disorder is weak. In Fig. 2, we plot the MET
based on PWA and our simple CPA for x=0.10 (the
dashed line is for scalar case; the EM is shown in the in-
set). Notice that in the EM case, for x=0.10, the only
pronounced structure is at 6=10. We have verified that
this structure, which is also present in the scalar case
(dashed line), is due to the l= 1 component. ' The lower
structure seen only in the scalar case at 6=5 is due to
the l =0 component. These CPA-based values of 6' coin-
cide with those of the numerical results. In addition to
these low-lying localized regions, CWL may appear for
higher values of 6 corresponding to the second and the
third resonances of the 1=0 (for the scalar case only)
and l =1 components as well as the first three resonances
of the l=2 component. The value of x required for the
appearance of CWL and the optimum value of x both in-
crease with the order of the resonance. Our CPA for the
scalar case gives x,pt=0. 20, 0.30, and 0.35 with corre-
sponding minimum values of @=6.7, 6.2, and 9 for the
first three resonances. For the EM case, we find

p;„=2.8 at x,„,=0.6 for boa Je~/c =4.1/(p —1) 'l .
For these values of x and p, the 1 =1 and the l=2 reso-
nances have merged together. However, because we are
limited to computations with L &4, we are unable to
check the above CPA results by our numerical methods
except for the lowest resonance (l=0), where the CPA
gives easier localization and higher x,pt, More explicitly,
the numerical work shows no localization at the lowest
resonance for x &0.23, while the CPA shows localiza-
tion even at x =0.40.

In conclusion, we have demonstrated for the first time,
using reliable numerical techniques, the classical wave
localization in composite random binary systems does ex-
ist. The one to one correspondence between the electron-
ic and the classical wave problems as summarized in Fig.
1 is very useful in expanding our understanding of the
classical wave localization and in allowing reasonable
semiquantitative predictions of the suitable range of pa-
rameters for its occurrence. Finally, our simple CPA
seems to work at least semiquantitatively and is easily
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generalizable to the vector electromagnetic wave.
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