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in Noncentrosymmetric Crystals
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A solution to the phase problem is described which gives the phase invariant P =2pp pg for electron
structure factors with phases pz and pg in noncentric crystals. The method exploits the high-voltage
dependence of a minimum in convergent-beam transmission-electron-diAraction patterns in the sys-
tematics three-beam geometry. For CdS, with h =(002) and g=(004) we find @=54.4' ~0.9'. The
error in the derived (002) x-ray structure-factor phase is 0.069 . The method is accurate enough to pro-
vide information on the bonding charge distribution in noncentric crystals.

PACS numbers: 61.10.Pa, 61.14.Dc, 61.16.Di

Despite considerable theoretical and experimental
eA'ort (see Ref. 1), the accurate measurement of the
phases of structure factors in noncentric crystals remains
an important unsolved problem in crystallography. Ex-
isting proposals' either lack accuracy, experimental
verification, or are limited to centric materials of which
large, perfect crystals can be grown. A solution to this
problem, particularly for polycrystalline materials, would
allow the ground-state crystal charge-density distribution
to be synthesized for a wide range of real materials of
known structure. While "direct" statistical trial-
structure methods have been successful in solving many
crystal structures in x-ray crystallography, the problem
of the direct measurement of the phases of low-order
reflections remains. These phases are needed with high
accuracy if the distribution of bonding electrons is to be
determined in noncentric crystals.

In this paper we describe a sensitive method for
measuring the phases of low-order electron structure fac-
tors Ug in noncentric crystals. These complex electron
structure factors are related by the Mott formula ' to
the Fourier coefficients of electron charge density, the x-
ray structure factors. For centric crystals of known
structure only the amplitudes and signs of these need to
be measured. Our method gives a two-phase invariant
from the systematics three-beam geometry by exploiting
the accelerating voltage dependence of multiple electron
scattering. The extended angular mapping of diffracted
orders available in convergent-beam electron diff'raction
(CBED) has also allowed the development of a flexible
method which does not require accurate selection of ex-
perimental parameters. By taking advantage of the
submicron electron probe sizes available on modern elec-
tron microscopes, the method may be applied to poly-
crystalline materials, and is not restricted to the large
single crystals needed for much x-ray and neutron-
diff'raction work. The sensitivity is, however, voltage
dependent.

The theoretical work of Kambe and of Gjonnes and
Hoier has shown that the diff'racted intensity in the

three-beam approximation depends on the sum of the
phases of the three structure factors (the three-phase in-
variant +), and that, for centric crystals, the elastic in-

tensity is exactly zero at one of two readily identifiable
points in a CBED pattern, depending on whether the
phases sum to 180 or 0 . Recent work on nonsystemat-
ics three-beam theory' ' extended for noncentric crys-
tals has shown that this zero then becomes a local inten-
sity minimum, whose depth depends on the three-phase
invariant. This work has suggested that a general
method of accurate phase determination by electron
diff'raction may be possible, based on measurements of
these minima. Accuracy is limited, however, by the
treatment of the inelastic background, which has a two-
dimensional variation in the nonsystematics case, and
which must be energy filtered for elastic Bragg scatter-
ing. The collection of one-dimensional elastic energy-
filtered data in the systematics orientation proposed here
are experimentally simple (and more accurate) since the
CBED pattern may be scanned over the slit of an
energy-loss spectrometer.

The principle of our method is as follows. Consider a
second-order reflection g at the Bragg angle in a noncen-
tric crystal. The CBED experimental geometry displays
the entire rocking curve (over an angular range of less
than twice the Bragg angle) in every diAracted order
simultaneously as a disk. Choosing a point in the central
disk defines the incident beam direction and conjugate
points differing by reciprocal lattice vectors in all the
other disks, and their excitation errors. For a certain
range of accelerating voltage, the perturbation to the
rocking curve for the second-order reflection g due to the
unavoidable weak excitation of the first-order reflection h

is shown below to be very sensitive to the sum of the
phases of the two relevant structure factors. (Excitation
of the third-order beam is much weaker. ) By comparing
the second-order beam's rocking curve with the results of
many-beam calculations (including nonsystematic in-
teractions for increased accuracy), the phase sum may
be found. First, however, to aid understanding and to
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determine the region of the CBED pattern most sensitive
to +, we apply the "Bethe potential" correction' (for
noncentric crystals) to two-beam theory. We define an
electron wave vector K (I K I

=1/k) and electron struc-
ture factors Us =K/gg =2ymo

I
e I Vs/h~, with Vs a

Fourier coefficient of crystal potential. Consider the
(002) =h and (004) =g systematics reflections shown in

Fig. 1 in a noncentric structure. With structure-factor
phases ps, the three-phase invariant is

U sin t:(crt/K)(K S +U )' ]I(S)=
E2S2+ U2

(2)

independent of choice of origin. Unlike the nonsystemat-
ics three-beam case, only two phases are involved. The
rocking-curve intensity observed in a CBED disk is given
in two-beam theory as a function of excitation error S~

e = —ps+ yg+ yg t,
= —y(004)+ y(002)+ y(002)

(3)

where t is the thickness of the crystal. We note that Eq.
(2) is independent of %'. The perturbation to the two-

=2y(002) —y(004) . beam form due to the excitation of the weaker systemat-
ics beam h is expressed by Bethe's second approximation,

For reciprocal lattice vectors forming a closed loop, + is applied to the noncentric case. " This requires that U~ in
! Eq. (2) be replaced by an effective structure factor

cos++
2KS~ IU, I

Thus to obtain sensitivity to phase in disk g near Sg=0,
we require Ss to satisfy the (material's dependent) con-
stant of Eq. (4). Now if Sg =0 then the Ewald sphere
geometry requires 2KSh = h in Eq. (4). Using the
definition of Ug to solve for y, and the expression
V~ =moc (y —1)/I e

I
for high voltage, we find

moc 2

(5)
h h p I Vs I

cosa

I Vg —h I 2mo I
e

I

which now depends on +. Figure 2 shows I Us /Uz I
for

various values of the phase %' with
I U; I

fixed. We re-
strict attention to the region near Sg =0, where the
Bethe approximation is most accurate (i.e. , for ISg I

«
I St, I

and
I St, I » I

U .,„ I /2K, with U, „
the largest

U). Figure 2 shows that
I U~ I

is most sensitive to
changes in + near its minimum,

=
I
sin@ I for 2KSt, = . (4)

I Ug I
cos+

t tais). The critical voltage corresponds to a choice of V~
which makes

I Us I
=0. Here we have extended the

theory to noncentric crystals and found the voltage Vz at
which, for a given phase, Ug is a minimum near Sg =0,
and therefore most sensitive to phase. Since, however,
the excitation error Sz in Eq. (3) is used as a variable in
CBED experiments, the choice of accelerating voltage is
no longer critical (each CBED disk displays intensity
over a range of Sg values). An error in choosing V~
(and thus K) may be compensated for by changing Sh
(i.e. , looking at a different part of the CBED disk). Un-
like the critical-voltage method (which is restricted to
centric crystals), our method also allows independent
refinement of several reflections, rather than giving a re-
lationship between structure-factor amplitudes.

These considerations can be illustrated with an exam-
ple. For CdS, with g=(004) and h =(002),

I Uh I

=0.0577,
I Ug I

=0.0142, and 9'=55.332' for neutral

where hp is Planck's constant and h is a reciprocal lattice
vector. Equation (5) reduces to an approximate form of
the critical-voltage formula for + =0 or z (centric crys-
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FIG. 1. Experimental (00h ) systematics CBED pattern
recorded at 120 kV from CdS. The intensity scans in Fig. 3
were taken along the line shown.

FIG. 2. Plots of ! Us' /Ug! against Sq (in A ') for various
values of the phase invariant +, showing greatest sensitivity to
+ at the minimum.
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atoms (room temperature, V~ =120 kV). We take ao
=0.41348 nm and co=0.6756 nm. Then at S~=0,
2ESp =0.088, which is sufficiently close to the value
2ICSq =0.363 of Eq. (4) to allow accurate refinement
(Fig. 2 shows that for ~ =55 the curves change slowly,
and hence the choice of Sg is not critical). Here 2KSh
varies from 0.2 to 0.022 across the disk, and a 1 change
in @ leads to a 1% relative change in U' (004). This
produces a readily detectable change in Ig, as shown
below. Equation (3) also shows how insensitive the
(004) intensity is to

~
U(004) ~, and how sensitive it is to

~
U(002)

~
(see below). For example, a 3% change in

~
U(004)

~
leads to only a 0.1% change in

~

U' (004) ~.
Thus (and in view of the relatively large size of g) the
use of scattering factors for neutral atoms (rather than
ions) is a good approximation for

~
U(004) ~.

Convergent beam patterns were recorded on film from
crushed samples of single-crystal CdS at 300 K in a Phi-
lips model EM400 transmission electron microscope at
120 kV. Patterns such as that shown in Fig. 1 showing
strong (00h) systematics were read into a VAX750 com-
puter using a flat-field, charge-coupled device camera

002

(a)

004

FICJ. 3. (a) Comparison of experimental (crosses) and
best-fit calculated (continuous line) results for the (002)
CBED intensity in CdS. Maxima 1, 2, and 3 are most sensitive
to

~
U(002) ~. The dashed curve is a calculation for a 1/o in-

crease in
~
U(002)

~
from best fit. (b) Similar to (a) for the

(004) rocking curve. The marker indicates the Bragg condi-
tion in both figures. The dashed curve is a calculation for a 1

decrease in + from best fit.

2 2
h, Ug+0.25 +C2E

(6)

and light table. The intensity around the outside of the
CBED disks was used to estimate the inelastic back-
ground. This was assumed one-dimensional and sub-
tracted. By comparing diff'erent scans taken parallel to
the systematics line, we find the experimental accuracy
in the intensity ratios to be 6%.

In view of the insensitivity of the (004) intensity to
~
U(004) ~, we do not include it in our refinement param-

eters. The Debye-Wailer factors and the position pa-
rameter u =0.37717(8) were obtained from recent x-ray
work. ' The final refinement therefore included (1)
phase invariant +, (2) a starting value of

~
U(002)

~

ob-
tained from tables, ' (3) absorption coefficients, and (4)
specimen thickness. The high voltage and incident beam
direction (the center of the Laue circle in the nearest
zero-order Laue zone) were found from the positions of
higher-order Laue zone lines in the central disk. Fig-
ures 3 (a) and 3 (b) show a comparison of experimental
data with the results of 32 beam Bloch-wave dynamical
calculations. All beams of appreciable intensity are in-
cluded, including nonsystematics. The algorithm treats
noncentric crystals in the form of a parallel-sided plate,
which may be inclined to the beam, with absorption.
Higher-order Laue zone eff'ects are included, using the
renormalized eigenvector method. ' A listing of the
program has appeared. ' The refinement parameters
were adjusted for best fit, with use of a method described
earlier. As shown by two-beam theory, the outer
fringes of the (004) were found to be most sensitive to
thickness, and gave a value of t =86.50 nm. Absorption
coefficients U'(g) were obtained by matching the asym-
metry in the central disk, with each of the reflections
satisfied in turn. For noncentric structures the U'(g)
and U(g) are each the complex Fourier coefficients of
real potentials. Our use of a real constant for the ratio
of these complex coe%cients assumes that the phase of
the absorption potential is eqU. al to that of the elastic-
scattering potential; however, our results are very insens-
itive to changes in U'(g). The results obtained were
U'(002) jU(002) =0.08 and U'(006)/U(006) =0.13,
with U'(004) negligible. The refinement of the remain-
ing parameters + and

~
U(002)

~
was based on the sensi-

tivity of the (002) rocking curve (near its center) to
~
U(002)

~
and that of the (004) curve to +. In Fig.

3(a), maxima 1 was found to be most sensitive to
~
U(002) ~, with the other maxima less sensitive. A 1%

change in
~
U(002)

~
causes a 6.8% change in the ratio

R' of maxima 1-3. None are very sensitive to +. The
best fit shown gives the value

~
U(002)

~

=0.0565
~0.0006. The error was estimated from the following
expression:

2
h, Ug

Ug
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The 6% error in the experimental data gives C~ =0.02.
Errors in thickness and E are both 0.5'Fo. A 10% error in
U'(002) causes a 3.3% change in R' giving C2=0.002.
Errors in other parameters are negligible. Thus the error
in

~
U(002)

~
is found to be about 1%. The refinement of

@ is completed last, using the (004) rocking curve shown
in Fig. 3(b). For the ratio R of the heights of maxima
1-3, many-beam calculations show that a 1% change in

~U(002)
~

leads to a 2.3% change in R, while a 1'
change in + causes a 7.6% change, revealing the high
sensitivity of our method. For the best fit shown, we find

+ =54.4'+ 0.9

The error is obtained from a quadrature sum of the
phase changes due to errors in intensity measurement,
the measured

~ Ug ~, absorption factors, and thickness.
These were 0.8, 0.3, 0.3', and 0.2', respectively. If we
assume p(004) =2.94' (known), the Mott-Bethe formu-
la gives the corresponding error in the deduced x-ray
structure-factor phase tt„,(002) as ~ 0.069'. By com-
parison, recent x-ray work on acentric crystals' gives er-
rors of 20'.

In conclusion, we have discovered a method for accu-
rately measuring a sum of phases of two structure fac-
tors in non centric crystals by transmission electron
diffraction, and applied it to the case of CdS. The
method uses one-dimensional data sets from the sys-
tematics orientation and is most sensitive for a certain
range of high voltage. The resulting phase measure-
ments are su%ciently accurate for the study of bonding
in known structures, and may also be used to assist in
solving few-parameter unknown crystal structures by x-
ray diffraction.
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