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Conformal Gravity in Three Dimensions as a Gauge Theory
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We show that conformally invariant gravity in three dimensions is equivalent to the Yang-Mills gauge
theory of the conformal group in three dimensions, with a Chem-Simons action. This means that con-
formal gravity is finite and exactly soluble.
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General relativity in three dimensions is equivalent to
a gauge theory, with a pure Chem-Simons action, and a
gauge group ISO(2, 1), SO(3, 1), or SO(2,2) depending
on the value of the cosmological constant. (This obser-
vation was anticipated in work on the group manifold ap-
proach to supergravity by Achucarro and Townsend. ' It
was made independently and perhaps more explicitly in

Ref. 2, and has been used in very interesting new work

by Blencowe on higher-spin particles in three dimen-
sions. ) It was conjectured in Ref. 2 that a similar result
holds for three-dimensional conformal gravity. We will

show in this paper that this is indeed the case.
In this paper, space-time is an oriented three-dimen-

sional manifold M, with either Euclidean (+++) or
Lorentzian ( —+ + ) signature. Because we do not

specify the signature, a number of formulas will contain
factors of ( —1)', where s is the number of negative ei-

genvalues of the metric. In most discussions, however,
we assume for brevity that M has Lorentzian signature.
The corresponding comments about Euclidean signature
follow easily.

A conformally invariant version of conventional gravi-

ty on the manifold M can be found using a type of
Chem-Simons action. ' In that formulation, the basic
variable in the theory is the vielbein e; . (Indices i,j,k
will be "world" indices and a, b, c will be "Lorentz" in-

dices. ) The spin connection co is defined as a function
of e by requiring that

The topological Chem-Simons action can be constructed
from the Riemann curvature tensor. The result is the ac-
tion

e'&"[~,.(a, ~k' —8km, ')+ —', e'"'~;.~,b~k, ] .
~ M

This action closely resembles the Chem-Simons action
for a Yang-Mills theory. However, the spin connection
is not an independent variable, but is instead a function
of e defined implicitly in (1). The supersymmetric ex-
tension of this action has been described in Refs. 6 and 7,

which treat the theory as a gauge theory. However, (1)
is still imposed as an external constraint.

In four or more dimensions, space-time is conformally
flat if and only if the Weyl tensor vanishes. In three di-
mensions, the Weyl tensor vanishes identically, and in-

stead space-time is flat if and only if

Dp8';j —Dj 8;k =0, (3)

On an oriented three-dimensional manifold, the natu-
rally defined volume fom t."' allows us to redefine the
rotation generators J' =

2
e' 'Jb, . The inverse of this

equation is J,b =(—I)'e,b,J'. The commutation rela-

where W~t =R;t. —4 g;IR. If we vary (2) with respect to
e to find the equation of motion, we discover that the
equation of motion is precisely (3). In other words, the
equation of motion forces space-time to be conformally
flat.

The conformal group is defined as the group of
diff'eomorphisms of compactified Minkowski space that
leave the metric invariant up to a Weyl rescaling,

g~t ~ A(x)gt. In three dimensions, the conformal group
has ten generators and is isomorphic to SO(3,2) in the
case of Lorentzian signature [or SO(4, 1) for Euclidean
signature]. The Poincare group ISO(2, 1) [or ISO(3)], is

a subgroup of the conformal group. Thus, the generators
of the conformal group include the generators I', of
translation, and the generators J,g of Lorentz transfor-
mations. Three new generators E, generate special con-
formal transformations, and one, D, generates dilations.
The commutation relations for the generators are

[Pa,Pb] = [J,b, D] = [K„Kb]=0,
[Par Jbc] rtacPb riabPc r

[Ka ~ Jbc ] riacKb rtabKc r

(4)
[P„Kb]=J,b+ri, bD,

[P.,D] =P., [K., D] = —K. ,

[Jabr Jcd] tlacJbc riad Jbc+ rlbd Jac tibc Jad ~
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tions with the new J are

[P„,Pb] =0 = [J„D]= [K„Kb],

[P„Jb]=e,b, P', [K„Jb]=e„b,K',

[P„Kb] = ( —
1 ) 'e,b,J'+ il, b D,

[P„,D]=P., [K.,D]=-K. ,

[J„Jb] =e,b,J'.

(5)

The isomorphism between the conformal group and
SO(3,2) is more obvious if we define new generators,
X =2 ' (P +K ) and Y, =2 ' (P K) —The
conformal generators can then be neatly arranged as a
5x5 matrix,

ty. We will not address the rather subtle issue of the al-
lowed integer values of k for the group SO(3,2).

Since the SO(3,2) Lie algebra is semisimple, it pos-
sesses (up to normalization) a unique gauge-invariant bi-
linear form, and thus there is up to normalization only
one Chem-Simons form. (This contrasts with the case
of ordinary general relativity in 2+1 dimensions, which
possesses an extra coupling constant at the quantum lev-
el. ) The invariant quadratic form of SO(3,2) is of the
form (T„Tb) =Tr(T, Tb), the trace being taken in an
arbitrary matrix representation, such as the representa-
tion in (6). This invariant quadratic form corresponds to
the invariant bilinear expression

8'= —,
' [P,K'+K,P'+ ( —1)'J,J' —DD]

R,b=
Xp

&p

—Jp

Jp

0

—X) V)
—A2 V2

0 D
—D 0

( —1) 'J2 —( —1)'J i
—Xcj Yo

in the group generators.
We can now introduce the gauge theory of SO(3,2).

Define the gauge field as a Lie-algebra-valued one-form

A; =e P, +co J, +X K, +p;D.

The generator of infinitesimal gauge transformations is a
Lie-algebra-valued zero-form

u =p P, + ~'J,+o'E, + yD . (10)

The metric for this representation is g„b =diag(( —1)',
+, +, +, —).

As we will show, the action that gives conformal gravi-
ty is simply the Chem-Simons action for the gauge
group SO(3,2). The Chem-Simons action for a Yang-
Mills gauge theory is defined to be

The variation of the gauge field A; under a gauge trans-
formation generated by u is

BA; = —D;u,

where covariant derivatives are defined by D;u =cl;u
+[2;,u]. Concretely, (11) means that the component
fields transform as

Ics=
g Tr(AAdA+ —, MAMAS),

where k is an integer and A is the gauge field. The
Chem-Simons action is invariant under gauge transfor-
mations that are connected to the identity, but since
ir3(SO(3, 2)) =Z, there are gauge transformations with
nonzero winding numbers under which it is not invariant.
This will, as in Refs. 4 and 9, lead to quantization of the

t

coupling constant of three-dimensional conformal gravi-

F„=[D, , D, ] =8;W, —8,W, + [W„W, ]

oe = —8;p"—e"(ebr, +co;bp. ) — ey+ y, p',

&, = —cl;cr' —e" '(X;br, +co;bcr, )+X y
—p;cr',

Si1~; = —cl;y —e o.,+k p, .

The curvature tensor F;~ is defined to be

(12)

(15)

=P, [c1;e& c1,e; +e (e;bco—j, +co;be, , )+e; itj y;ej ]—
+Ja [6;CO~ BjCO; + e COibCOjc+ ( 1 ) e (eibkjc+X;hemic)]

+Ka [B,kj Bjx; + e (Aibcojc+ coibkjc) xi Qj+ i1iixj ] +D(Bicjij BPP;+e; vaja xg eja) . (16)

We can now construct the Chem-Simons action

~~, e [cia(Bjkk Bkkj )+ p ( 1) coia(cjj cok c1kcoj ) cjii (c)j cjik c)kitij )
k

+2& eiaCOjb~kc+20i~j eka+ 3 ( 1) ~ COiaCOjbCOkc] ~

s abc
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The equations of motion derived from this action are F;j =0, or

6;ej' —Bje +b (e(bcvjp+cv/beJQ)+e Pj
—P;ej

(jl;kj 9jk; + E (X bMj'+CO bXj ') ~i Pj+P'~j (20)

Let us explore the gauge transformatlons (12)-(15). If we set p'=~'= 7=0, the z' transformation gives a local
orentz transformation. Similarly, if we set p'=z'=a'=0, the y transformation is a local rescaling, or conformal

transformation. Thus, local Lorentz transformations and conformal transformations are gauge transformations.
Local diff'eomorphisms are not apparent in the transformation laws. A diffeomorphism generated by a vector field

—v generates the standard transformations

Se = —v" (8ke —l);ek ') —r); (v "ek '), Scv = —v "(Bkrv —8; rvk ') —ri; (v "cvk '),
= — "(r) x —6;x ') —6;( "x '), Sy;= — "(Bky; —8;yk) —&;( "yk).

(22)

This should be a gauge transformation in the theory of conformal gravity. If we make the gauge transformation with
gauge parameters p'=v ek', z'=v"cok', cr'=v"Xk', and y=v"pk, we see that the gauge transformation differs from
the diff'eomorphism by

Se Se = v [r) ek |)kel + E (ebb ~vk + rvibpk ) + ei Pk Pick

=v" [8.kk' —6 kk+E' '(X;brvk, +;b&k, ) &('Pk+P(&k'l,

gg; —6P; =v (8;Pk —Bkg;+e; kk —k; ek ) .

(23)

These all vanish precisely when the equations of motion
are satisfied. Thus, local diff'eomorphisms are gauge
transformations, at least on shell.

Having constructed the gauge theory SO(3,2) with a
Chem-Simons action we will now show that this theory
is equivalent to the conformal gravity theory of Ref. 4 at
the classical level, under the following restriction.

In Ref. 4, the basic variable is the vielbein; the spin
connection is defined as a functional of the vielbein; and
since the inverse of the vielbein appears in the definition
of the spin connection, it is necessary to assume that the
vielbein is invertible. This is natural in the context of
Riemannian geometry. On the other hand, in our action
(17) there is absolutely no reason to assume that the
vielbein is invertible; such an assumption would be con-
trary to the general rules of gauge theory. In fact, in our
gauge theory formulation, the question of whether the
vielbein is invertible in a given space-time region is

gauge dependent. For instance, on any space-time mani-
fold jM; the field equations (1S), etc. , are obviously
obeyed by e =co =p =X =0. While this seems as far as
possible from an invertible vielbein, it locally can be
gauge transformed into a form in which the vielbein is
invertible. (Whether this is possible globally depends on
the topology of space-time. If space-time is S, the solu-
tion e = . =0 can be gauge transformed into a form in
which the vielbein is everywhere invertible, but if space-
time is a lens space S jZk, this is not possible. )

Since the vielbein must be invertible in Ref. 4 while

we do not require this, the meaning of the claimed classi-
cal equivalence between the two theories is simply that
solutions of the field equation (3) of Ref. 4 are in
correspondence with solutions of our field equations in
which the vielbein (in a suitable gauge) is everywhere in-
vertible. Actually, the different between the two theo-
ries —the fact that we permit "singularities" correspond-
ing to a noninvertible vielbein —is extremely important
at the quantum level, since (as in the discussion in Ref.
2) the quantum theory derived from (17) is renormaliz-
able and even finite, while this could not be expected in
the formulation of Ref. 4.

The invertibility of the vielbein enters as follows.
When e is invertible, the gauge transformation law
(15) for p; shows that the cr' gauge invariance is precise-
ly sufficient to set p; to 0. Furthermore, (12) says that
e is completely unchanged by a a' gauge transforma-
tion, and so e; remains invertible in this new gauge.

With the gauge choice p; =0, the equations of motion
simplify considerably. The equation of motion for the
vielbein becomes

6;ej —B,e; + e (eibroj~+ roibe, , ) =0. (24)

This is identical to

where D; is the covariant derivative with respect to the
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spin connection ro . In the gauge p; =0 (but not other-
wise), to; is precisely the Levi-Civita connection. The
other equations of motion become

D;k)
' —

D) k =0,

R;, '+ ( —1) 'e'b'(e;pk, ,+7;be), ) =0, (28)

(29)

Until this point in the discussion of the gauge theory
of SO(3,2), we have not introduced the Christoffel sym-
bols of general relativity. To compare with the formula-
tion in (3), it is convenient to introduce them. The
ChristoAel symbols may be defined by requiring that

where the Riemann curvature tensor is defined in the
standard way as

where the covariant derivative is defined by

[The point is that if one does not wish to introduce the
ChristoA'el symbols, (25), in which the ChristoA'el sym-
bols do not contribute, defines the connection m; but the
stronger condition (30) serves to define both ro and I".
With the metric defined by g;~. =e;,e~', (30) implies
Dj, g;~ =0, an alternative conventional definition of the
ChristoA'el symbols. l

The Ricci tensor is now

Il II a b+ij g +&'&j & g ej el +ikab

In the last step, (28) has been used; the resulting expres-
sion for R;~ is symmetric by virtue of (27). The confor-
mal tensor WJ that appears in (3) now becomes

Die)' =0, (30) (32)
! Thus,

DkW;, —D, Wk = —Dke X,, —e Dkk~, +Duvet'&ka+«'Dz)ka =D~e; X« Dke &,,+e—(D, &ka Dk7ja) 0 (33)

and space-time is conformally Bat.
This shows that a solution of the equations derived

from (17) in which the vielbein is invertible gives a solu-

tion of (3). Conversely, given an invertible vielbein e;
that defines a curvature obeying (3), one obtains a solu-

tion of Eqs. (18)-(21) by taking co to be the Levi-Civita
connection, p to be zero, and using (32) [or equivalently

(27) and (28)] to define X. This establishes the desired
resUlts.
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