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We interpret the exchange-correlation potential of Kohn-Sham density-functional theory to be the
work required to move an electron against the electric field of its Fermi-Coulomb hole charge distribu-
tion. We substantiate this interpretation in the exchange-only approximation by proving the satisfaction
of a necessary condition as well as by application to few-electron atomic and many-electron metallic sur-
face systems. This interpretation also provides insights into the exact Slater exchange potential.

PACS numbers: 03.65.—w, 31.10.+z

In this Letter we provide a physical interpretation for
the exchange-correlation potential p„,(r) of Hohenberg-
Kohn-Sham ' density-functional theory. At present this
potential is known only in terms of its mathematical
definition as the functional derivative of the exchange-
correlation energy functional. Initially we develop the
interpretation from a physical viewpoint based on the
tenets of electrodynamic theory. We then substantiate
the physics by proving the satisfaction of a necessary
condition. The understanding of the physical origin of
this potential also provides insights into the exact Slater
exchange potential.

As a consequence of the proof of the Kohn-Sham
theorem via the variational principle for the energy, the
potential p„,(r) is derived to be the functional derivative
bE„,[p]/bp of the exchange-correlation energy function-
al E„,[p] of the density p(r). The profundity of Kohn-
Sham theory lies in the fact that the potential p„,(r) in
which all the many-body eA'ects are incorporated is lo-
cal. However, although for systems with a large number
of electrons, this potential can be thought of as the
exchange-correlation contribution to the chemical poten-
tial, and there is at present no physical understanding of
what this potential means. On the other hand, the
exchange-correlation energy functional E„,[p] does have
an interpretation. In any interacting electronic system
each electron is surrounded by its Fermi-Coulomb
(exchange-correlation) hole charge distribution. This
charge is equal in magnitude but opposite in sign to that
of the electron. Thus, the exchange-correlation energy
may be thought ' of as the interaction energy between
an electron at r and its Fermi-Coulomb hole charge den-
sity p„,(r, r') at r', and consequently written as

~ ~ p(r)p„, (r, r')
(1)

Based on this definition of E„,[p], the exchange-
correlation potential must be the work done to bring an
electron to r in the electric field produced by its Fermi-
Coulomb hole charge density. A similar interpretation
exists for the Hartree electrostatic potential V„(r).

Mathematically, this potential is the functional deriva-
tive of the electrostatic energy functional E„[p]given as

" "p(r)p(r')E„[pl = v (r)p(r) dr'+ —,', dr dr', (2)
r —r'

where v(r) is the external potential seen by the electrons.
Thus, the electrostatic potential is

(3)

The physical interpretation of this potential is that it is
the work done in moving an electron from infinity up to
its final position against the field of the total (electronic
plus nuclear) charge distribution. However, because of
the functional dependence of p„(r,r') on p(r), the func-
tional derivative of E„,[p] of Eq. (1) is not j dr'p„, (r, r')/

~
r —r'~. Furthermore, since this functional dependence

is unknown, the functional derivative cannot be obtained.
To account for the dependence of p„, on p in calculating
the exchange-correlation potential, the electric field due
to the Fermi-Coulomb charge distribution, which ac-
cording to Coulomb's law is

"p„,(r, r')(r —r')

must first be determined. The corresponding potential
which is the work done in bringing an electron from ~ to
r against the force of this field is then

W'„(r) = — 4„,.dl .

This is the local effective exchange-correlation potential
seen by the electrons. The understanding of this inter-
pretation lies in the physics. The structure of the
Fermi-Coulomb hole of an electron in an inhomogeneous
electron gas is dynamic and changes as a function of
electron position. This is a consequence of the depen-
dence of the hole on the electronic density. Thus, in con-
trast to the electrostatic potential V„(r), which is due to
a static charge distribution, the exchange-correlation po-
tential is due to a charge distribution that depends on the
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position of the test charge, and therefore must be deter-
mined in the manner described above.

Although the interpretation given to the local potential
incorporating all the many-body eITects has been arrived
at on physical grounds, it is nonetheless rigorous since
the analysis is based on fundamental precepts of both
electrodynamic and density-functional theory. However,
in order to explicitly relate this physical interpretation to
density-functional theory, we next prove that the work
done satisfies a necessary condition for it to be the func-
tional derivative.

For our proof we work within the exchange-only ap-
proximation of density-functional theory. In this ap-
proximation only Pauli correlations between the elec-
trons are assumed in the wave function. Although the
density dependence of the corresponding Fermi hole (or
exchange charge density) is unknown, the hole can be
defined precisely in terms of the electronic wave func-
tions. For an electron with wave function y(r) at r, the
Fermi hole p„(r,r') at r' is defined as

p, (r, r') =
~ y(r, r')

~
/2p(r), (6)

where the single-particle density matrix y(r, r')
=g; y,

* (r ) y; (r') satisfies the condition y(r, r') = y* (r',
r). The total charge of the Fermi hole is also equal in

magnitude and opposite in sign to that of the electron.
As an electron is removed from within a system such as
an atom, molecule, or a metal, its Fermi hole distribution
changes substantially as a function of electron position.
In atoms and molecules this changing charge distribu-
tion is localized about the system, whereas in metals '
it is delocalized and spread throughout the crystal.

Now employing the virial theorem, Levy and Perdew"
have proved that the exchange-energy functional E„[p]
may also be written as

E fp] = — p(r)r Vp„(r)dr, (7)

&.[p]= —,
'

J J ~ y(r, r') ~' ' ', , drdr'. (8)
r —r'

Since
~ y(r, r')

~

=
~

y(r', r) ~, Eq. (8) may be rewritten
by interchanging r and r' as

& [p]= ——'
r —r' '

Adding Eqs. (8) and (9) and dividing by 2 gives

F [p] = —'
J Jt ' drdr',

(9)

where p„ is the functional derivative 6E [p]/6p(r). This
expression for the exchange energy is valid for arbitrary
density p(r). Replacing p, in Eq. (7) by W„where W,
is the work done in the electric field 8 of the Fermi
hole, and noting that C„(r)= —VW, (r), we have on
substituting for C„and p„(r,r') from Eqs. (4) and (6)
that

which is Eq. (l) in the exchange-only case. Thus, the
work W„satisfies the necessary condition for it to be the
functional derivative of the exchange-energy functional
E„[p]. This also shows that W„ is consistent with the
virial theorem.

The proof of the equivalence of the work done to the
functional derivative requires in addition a suKciency
criterion since there might exist several functions which
when substituted for p, in Eq. (7) lead to the exact ex-
change energy. However, it is equally important that
these functions be derivable from fundamental physical
considerations. On the basis of the fact that the work
8 is so derived, as well as by the agreement with the
tenets of density-functional theory of the results of appli-
cation to few- and many-electron nonuniform systems as
discussed below, we conjecture that it is the functional
derivative.

Although the above proof has been given for
exchange-only theory, we believe the necessary condition
to also be satisfied by the potential Wc derived from the
Coulomb hole. Our conjecture is based on the argu-
ments that though the physical origins of the Fermi and
Coulomb holes are diff'erent, their charge distributions
are similar in that they are both dynamic as a function of
electron position. It is this property of the charge distri-
butions that is intrinsic to the construction of the corre-
sponding potentials via the laws of electrodynamic
theory, and consequently both potentials should satisfy
similar identities and conditions.

Thus far, the principal approach to the application of
Kohn-Sham theory has been via approximate energy
functionals E„,[p] and their functional derivatives.
However, as a consequence of the above interpretation
and proof, the local exchange-correlation potential can
now be determined directly from the Fermi-Coulomb
hole. Therefore, the diA'erential equation to be solved for
the determination of the properties of an interacting
electronic system within the context of density-functional
theory is

or with W„,= Wx+ Wc, and with p(r) =g;
~
e;(r)

~

It is thus evident that the fundamental property of an
interacting Fermion system in which all the many-body
eAects are incorporated is the Fermi-Coulomb hole
charge distribution. A knowledge of the Fermi-Coulomb
hole leads not only to the exchange-correlation energy
E„but via the local potential 8'„, to the ionization ener-
gy' —e „. Approximate forms of this distribution
must reproduce, at least qualitatively, the correct dy-
namics of the exact hole for both the energy and ioniza-
tion potential to be obtained accurately. However, the
fact that an approximate Fermi-Coulomb hole may have
the same spherical average as the exact hole, thereby
leading to the same exchange-correlation energy, does
not imply that the corresponding work done will be the
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same. The potential W„e depends explicity on the
Fermi-Coulomb hole structure and not on any such aver-
age.

Within density-functional theory, the prescription for
solution of any inhomogeneou. s electron-gas system
whether it be atomic, molecular, or surface system is
now known exactly in the exchange-only approximation
[Wc =0 in Eq. (11)]. Furthermore, since the potential is
local, the self-consistent solution of these equations is
considerably less complex numerically than those of
Hartree-Fock theory. For the fully correlated electron

gas, approximate forms of the Coulomb or Fermi-
Coulomb holes such as those within the random-phase
approximation must be employed. Now since both the
Fermi-Coulomb and Fermi hole charge distributions in-
tegrate to unity, the total Coulomb hole charge is zero.
Thus, asymptotically, the work 8'c done in removing an
electron from the field of this charge distribution must
vanish. The asymptotic structure of the exchange-
correlation potential for the fully correlated nonuniform
system is therefore that of W„alone, and thus also
known exactly. The more accurate the representation of
the Coulomb hole, the more accurate will be the results
for the ground-state energy, ionization potential, and
other properties. However, approximating the Coulomb
hole charge density implies that the energy is no longer a
rigorous upper bound, because the rigor of the Hohen-
berg-Kohn theorem proof is lost if the correlation energy
functional is approximated. Finally, we note, that since
the Fermi-Coulomb holes for electrons in their ground
and excited states are different, the corresponding poten-
tials will be too, and therefore the formalism is not re-
stricted to being only a ground-state theory.

The physical interpretation of the many-body potential
also leads to insights into the exact Slater potential.
Within the exchange-only formalism, Slater too had sug-
gested that all the electrons could be treated as if they
moved in the same local effective potential. The ad hoc
potential proposed by him was

Vslater(r )
' dr

~ p, (r, r')
r —r'

This potential is not the functional derivative of the
exchange-energy functional E„[p] as written in Eq. (1)
in terms of the Fermi hole. Furthermore, as pointed out
by Kohn and Sham, the Slater potential for the homo-
geneous electron gas corresponds to the average value of
the electronic energy which is a factor of —', greater than
the Kohn-Sham potential which is the energy value at
the Fermi level. However, the physical reason why the
Slater potential is incorrect is that the Fermi hole is a dy-
namic ' charge distribution. As a consequence, the
correct local eff'ective exchange potential is the work
done on the electron in the electric field due to the Fermi
hole. The Slater potential would be correct only if the
Fermi hole were static.

In the literature it is assumed that the Kohn-Sham po-

tentials for atoms in the exchange-only approximation
are those derived by the optimized-potential method
(OPM) of Talman and co-workers. ' The OPM is a nu-
merical scheme that determines variationally a central
local potential which minimizes the expectation value of
the Hartree-Fock Hamiltonian. The result of the varia-
tion is a complex linear integral equation for the local
exchange potential. In order to determine whether these
are the Kohn-Sham potentials, we have calculated the lo-
cal potential 8' for atoms with the corresponding Fermi
hole and electric field determined using the self-
consistent Talman orbitals. ' In Fig. 1 we compare the
OPM and 8'„potentials for the argon atom.

A study of the graph shows that in the deep interior of
the atom up to and including the K shell, which is the re-
gion from which the principal contribution to the ex-
change energy arises, the 8'„and OPM curves are essen-
tially equivalent. They are also indistinguishable in the
L and M shell regions. (The values of the OPM and W
potentials at the nucleus, for example, are —28.1297
and —27.3940 Ry, respectively. The corresponding
value for the Slater potential is —35.6533 Ry. )

Asymptotically far from the nucleus, both the 8'„and
OPM curves fall oA' as —1/r. Talman and Shadwick'
have proved mathematically that the linear integral
equations of the OPM lead to this asymptotic structure.
That this must be the asymptotic structure of 8' is evi-
dent from the fact that the Fermi hole has a total charge
of unity which is localized about the nucleus of the atom.
Furthermore, for asymptotic positions of the electron the
Fermi hole stabilizes, i.e. , it is static, with its center of
mass at the nucleus. In this asymptotic region the struc-
ture of 8' and the Slater potential are thus, also the
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I IG. 1. The variation of 8„and the OPM central potential
for the argon atom.
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same.
As indicated earlier, the asymptotic structure of 8'„ is

also the structure for the fully correlated systems, and in
atoms' and molecules the Coulomb hole is also localized
and must stabilize for asymptotic electron positions.
This is consistent with detailed derivations' ' for atoms
which show that p„,——1/r —a/2r as r ~, where a
is the polarizability of the positive ion, and where the
leading term is due to exchange effects alone.

It is only in the intershell regions that the OPM and
curves differ, the former exhibiting bumps which are

absent in the latter. The fact that the slope of 8 is pos-
itive throughout, however, means that work must always
be done on the electron against the attractive force of the
Fermi hole in order to remove it from the atom. The
negative slope of the OPM curves, on the other hand, im-

plies that the electron is being pushed out by the ex-
change charge distribution in this region of the atom. It
is thus clear that although very close, the Talman poten-
tials (or any other local potentials which exhibit such
bumps in atoms) are not the true Kohn-Sham potentials.
In exchange-only density-functional theory, the poten-
tial is determined from that single determinant which
minimizes the fully interacting Hamiltonian and which
simultaneously is constrained to be the ground state of a
noninteracting Hamiltonian with this local potential. Al-
though the Talman orbitals minimize the expectation
value of the Hartree-Fock Hamiltonian, they do not
satisfy the latter constraint. This is rejected in the fact
that the exchange energies determined by these orbitals
and potentials from Eqs. (l) and (7) differ. For the ar-
gon atom, the exchange energies as obtained by these
different expressions are —60.32 and —59.94 Ry, re-
spectively. Substitution of the work 8'„as calculated by
the Talman orbitals in Eq. (7), however, leads to the
value of —60.32 Ry as must be the case.

Finally, we make the following observation with re-
gard to the popular local-density approximation for the
exchange-correlation energy from which the functional
derivative is easily obtained in terms of the density. In
this approximation the Fermi-Coulomb charge is always
centered and symmetric about the electron, and conse-
quently the work done vanishes for all electron positions.
Thus, the approximation, though exact for the uniform
electron gas, is weakly founded for nonuniform systems.

We have recently obtained the self-consistent solution
of the 8 equation for a few light atoms. These results
as well as those for other elements of the periodic table
will be presented elsewhere. ' We are also studying the
structure of the 8' potential at metallic surfaces using
physically realistic wave functions. ' Results for this

case indicate that with reference to the vacuum level, the
potential W„(in units of 3kF/2x, where kF is the Fermi
momentum) approaches a value of —0.67 in the bulk
metal as it must according to Kohn-Sham theory. The
corresponding value in the Slater theory is —1.00. The
fact that our results for both few- and many-electron sys-
tems are entirely consistent with the tenets of density-
functional theory further supports our contention that

and 8'„, are the exchange-only and fully correlated
system Kohn-Sham potentials.
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