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It is proposed to set stringent limits on possible nonlinear corrections to ordinary quantum mechanics

by searching for the detuning of resonant transitions. A suggested nonlinear generalization of quantum
mechanics is used to show that such detuning would be expected in the rf transition in Be+ ions that is

used to set frequency standards. Measurements at the National Bureau of Standards already set limits
of order 10 ' on the fraction of the energy of the Be nucleus that could be due to nonlinear corrections
to quantum mechanics, with good prospects of improving this by 2-3 orders of magnitude.

PACS numbers: 03.65.Bz, 06.30.Ft, 32.30.Bv, 35.80.+s

It seems long overdue to find precision tests of quan-
tum mechanics itself, that would be more stringent than
existing tests of specific quantum-mechanical theories.
One sensitive way to test the linearity of quantum
mechanics is to look for the detuning phenomenon
characteristic of any system of nonlinear oscillators. The
resonant frequency at which a weak external field can
strongly perturb a nonlinear system will in general de-

pend on the amplitudes of the various modes excited, so
no matter how we set this frequency, the resonance will

be detuned as the amplitudes change. This will prevent
us from being able to drive the system slowly from one
mode to another, say in a time T, unless the change in

the resonant frequency during this transition is within a
natural width of order I /T. This is a particularly
promising way to look for departures from the linearity
of quantum mechanics, because in the eff'ort to set fre-
quency standards, experimentalists' have already been
able to drive hyperfine transitions in ions such as Be+
with T as long as several seconds, and with good pros-
pects of increasing this to several minutes. Thus such
experiments (or related NMR or ESR experiments) can
potentially set very stringent limits on any frequency
shifts that might arise from nonlinearities in the equa-
tions of motion of the wave function.

In order to see what sort of nonlinearities might actu-
ally be expected to show up in such an experiment, and
to make all this quantitative, it is essential to formulate

h(Xy, ttt*) =h(ttt, Xy*) =ah(y, ttt*) . (2)

[This requirement ensures that if yk(t) is a solution of
(1), then so is kyi, (t). It also plays an essential role in

many aspects of the theory, including the proper treat-
ment of separated systems. ] These equations are of the
Hamiltonian form, with qt, = J2Rettlk and pk = J2imtttk.
Equation (1) reduces to the usual linear time-depen-
dence equation of quantum mechanics if we take
h(y, y*) as bilinear, h =tttk Hkttttt, but it is not necessary
for h to be bilinear to be homogeneous. Small nonbilin-
ear terms in h will produce small nonlinearities in the

some sort of nonlinear generalization of quantum
mechanics. Recently there has been proposed ' a gen-
eralized version of quantum mechanics that seems physi-
cally satisfactory, at least nonrelativistically. For the
purposes of the present paper, it is sufhcient to consider a
discrete system, like the hyperfine states mentioned
above, for which the wave function can be taken to de-
pend on only a discrete variable k. The time dependence
of the wave function is assumed to be given by an equa-
tion of the form

. dpi Bh(ttt, y )
l

tl tttt

where h is a real function of y and y*, satisfying the
homogeneity requirement, that for any complex number
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h =nh(a),

where n is the norm,

n =
I yi I

'+
I y2 I

',

(3)

equation of motion (1).
Let us first consider a system like the Be+ ion, but in

the absence of time-varying external fields. For the rno-
ment, we will also restrict ourselves to two-component
systems, with k =1,2. The Hamiltonian function h will
be taken to have the form

necessary also that

n =h(I) —h(O) =E, —E, . (lo)

It is comforting to see that this result, related to energy
conservation, holds here for arbitrary h (a) just as in or-
dinary quantum mechanics. With 0, tuned to this value,
the transition will go all the way from a =0 to a=1 if
and only if the argument of the square root is positive-
definite for all intermediate a, i.e., if and only if

[[h(1)—h(0)la+h(0) —h(a)] /a(1 —a) & 4
I g I

'

and h is an arbitrary real function of the convenient ac-
tion variable,

[The form (3) will be automatic for the specific system
to be studied here. More generally, it can be shown
that by a "canonical" transformation y& y&, any
two-component system satisfying (1) and (2) can be
given a Hamiltonian function of the form (3), while still
preserving the equation of motion (1).] Nonlinear terms
in h(a) yield nonbilinear (though homogeneous) terms
in h.

In general, energy eigenstates are solutions of (1) for
which the whole wave function oscillates with a common
factor exp( —iEt). In our case, we easily find them to be
(w)

y2=0, a =0, E =E~ =h(0),
and (8)

(6)

y~ =0, a =1, E =Ee =h(1) .

Now let us turn on a small time-varying perturbation
h, h, of the sort that might drive a transition between
states 2 and B. Since h, h is assumed very small, we ig-
nore the possibility that it might include even smaller
nonbilinear terms, and take it as the bilinear

' = [4 Ig I'a(1 —a) —[na —h(a)+c]2] '",
dt

(9)

where C is an integration constant.
Now let us see if the perturbation can drive the transi-

tion 2 8 between the energy eigenstates (6) and (7).
In order that the square root in (9) not have a negative
argument at the starting point a =0, it is necessary to
take C=h(0). Then, in order that the square root not
have a negative argument at the ending point a =1, it is

AA =gl/f2 lp']e + C.C. ,

where g is a small coupling parameter, and 0 is a fre-
quency at our disposal. The time dependence of yt, (t) is
then given by using Eq. (1), with h+Ah in place of h.
These two complex equations can conveniently be boiled
down to a single real equation for the action (5):

for all a with 0 & a & 1. In ordinary quantum mechanics
h(a) is linear, so the left-hand side vanishes, and the
transition does occur. More generally, seeing the transi-
tion occur provides an upper bound on the nonlinearities
in h(a). Note that it is not necessary to verify with high
precision that the transition goes all the way from a =0
to a=1; if the inequality (11) is violated, the transition
will typically get no further than half way. As men-
tioned earlier, in place of

I g I
this bound can be written

in terms of the time T=tt/2IgI that the transition
would take in ordinary quantum mechanics. [Even when
the inequality (11) is satisfied, nonlinearities in h(a) can
show up as an asymmetry of the resonance line. ]

As a variation on the detuning approach, one can try
to make use of a technique due to Ramsey that is used
in setting frequency standards. As presently used, one
first observes that for a given external rf field of frequen-
cy 0, , the transition 4 8 is driven in a certain time T.
One then repeats the experiment, but now driving the
transition only for a time T/2, then blocking the external
rf field for a time T')) T, during which the system oscil-
lates freely, and finally driving the transition again for a
time T/2. In effect, this shifts the constant C in Eq. (9)
by an amount IgI sin[[f1 —h'(2 )]T'], preventing the
transition A 8 unless

I
0 —h'( —, ) I

T'((1. This in it-
self does not set any new limits on nonlinearities in h(a);
all that is learned is that not only is 0 equal to h'(a)
within an accuracy of order 1/T over the range
0 & a & 1, but also 0 =h'( —,

' ) to within a greater accu-
racy, of order 1/T'. However, we can try blocking the
external rf field at several diAerent times, thus verifying
that t1 =h'(a) at various dtfferent values of a.

What form do we expect for h (a) in the experiments
of Ref. 17 The Be nucleus has spin j= &, and is in a
magnetic field, mostly due to the valence electron of the
Be+ ion. Let us first consider the nuclear Hamiltonian

function hp in the absence of the magnetic field. The
only bilinear term in hp allowed by rotational invariance
is just proportional to the norm n, and merely contributes
a constant to h(a). The simplest nonbilinear term satis-
fying the homogeneity condition (2) would be propor-
tional to a product of two y's and two y*'s, divided by a
single power of the norm. There are two rotationally in-
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variant terms of this type (because the product of two y's can only have total spin j=3 or 1, and likewise for two y*'s)
but one linear combination just gives a term proportional to n again, so we have essentially only one possible rotational-
ly invariant term of this type. This term is of the form

ho= —g [2I J3y( —', , a) y( —2, a) —y(-,', o.)y(2, a) I
'+3

I y( —', , a) y( —
—,', a) —y( —,', a) y( ——,', a) I

'

+21~3m(2, a) v( —r, a) —v( —2.a) v( —2, a)
I

'~ (i2)

Here e is a small coe%cient with the dimensions of ener-

gy; n is the norm,

n=g Iy(m, a) I',
m, a

(i3)

and y(m, o.) is the component of the wave function with
nuclear spin z component equal to m and with quantum
numbers for everything else in the problem labe1ed cr.

For the Be+ ion, o can be taken as the z component of
the valence electron spin, so that cr =+' —,'. If y(m, o)
can be factored as y~(m)y, (cr) then, because of its
homogeneity, the energy eigenvalues and time depen-
dence obtained from (12) do not depend on y, . (This is
an example of what was referred to earlier as a proper

treatment of separated systems. As we shall see, in our
case this factorization is a fair approximation. )

In the absence of any other terms, Eq. (12) would
have the energy eigenvalues 4 e, 2e, 4 t., and zero, each
corresponding to a rotationally invariant submanifold of
eigenvectors. However, this pattern is completely
changed by the external magnetic fields acting on the
Be nucleus.

Now let us include the hyperfine interaction of the Be
nucleus with the valence electron's spin, and the interac-
tion of both nucleus and electron with an external mag-
netic field 8. These are all small relative to typical nu-

clear energies, so here we ignore possible nonbilinear
terms, and take h as just the expectation value of the
usual Hamiltonian of quantum mechanics:

hQM g g y*(m', a')y(m, a)lp, (J,) .~8 +p~(J~)~ B6 +~(J,) (Jpj)m'-],
m, O m, O'

(i4)

with K' representing the'strength of the hyperfine interac-
tion. By itself, this would give eight states, with energies
as a function of I B I represented by a typical Breit-Rabi
diagram For the relatively strong magnetic field used in
Ref. 1, the energy eigenstates are nearly pure in m and
o, with admixtures limited to a few percent. The separa-
tion of these states is so much greater (presumably) than
the small shifts due to nonlinearities that we can first
solve for the energy eigenstates of (14) (by finding its
stationary points on the surface of unit norm) and then
evaluate the nonlinear term (12) for any mixture of
these.

In the measurements of Ref. 1, one starts with the
Be+ ion in an energy eigenstate with m = —2, o = 2,

and drives a single-photon transition to the eigenstate
with m = ——,', o.= —,

' with an rf field tuned to this tran-
sition. No other components of the wave function are
appreciably excited, so we can use our previous results
for the two-component system. In our previous notation,
taking y' = y( ——', , —,

' ) and @2=y( ——,', —,
' ), and drop-

ping other components, Eq. (12) yields a nonlinear term
in h(a),

h(a) =2ea'.
[There are also much larger linear terms in h(a), arising
from hQM. ] From Eq. (11), we see that if the transition
A 8 is observed to be driven in a ™ T, then
IeI &2IgI=zlT. The measurements already per-

formed, ' with Tof order 1 s, set a bound on
I eI of order

10 ' eV, less than the binding energy per nucleon of

the Be nucleus by a factor of order 10 '. This may
be improved by 1 or 2 orders of magnitude by the reduc-
tion of the rf power to lengthen the transition time T, or
by use of the Ramsey trick, with several free-precession
times of several minutes at various stages in the transi-
tion. Line-splitting methods might allow one to do even
better.
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The question naturally arises, whether to compare the limit

on
~

e~ with the binding energy of the Be nucleus, or the
larger rest mass of the nucleon, or the much smaller hyperfine

energy in the Be+ ion. The departures from quantum
mechanics discussed here would arise from the internal energy
of the free Be nucleus, as given in Eq. (12), not from its in-

teraction with external magnetic fields, so it would be pointless
to compare

~
e

~

with the hyperfine energy. Also, rotational in-

variance does not allow any nonbilinear homogeneous terms in

the Hamiltonian function for a free particle of spin 2, so it
seems inappropriate to compare

~
e

~
with the nucleon rest

masses. On the other hand, because the Be nucleus has spin
rotational invariance does not prevent departures from

quantum mechanics in the internal dynamics of the nucleus
from producing nonbilinear terms in the Hamiltonian function
of a free nucleus, such as that shown in Eq. (12). Thus it
seems reasonable to compare

~ e~ with some energy charac-
teristic of the internal dynamics of the nucleus, such as the
binding energy per nucleon.


