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Model for Quasi-One-Dimensional Antiferromagnets: Application to CsNiCl3
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The approximate mapping of the antiferromagnetic Heisenberg chain onto a (1+1)-dimensional quan-
tum field theory indicates that the ground state is disordered with a finite gap for integer spin. We study
a lattice of coupled (1+1)-dimensional field theories as a model for weakly coupled spin chains. This
model offers a possible resolution to the mystery of the upper mode in the low-temperature ordered
phase of CsNiCls, whose polarization is inconsistent with spin-wave theory.

PACS numbers: 75.10.Jm, 75.30.Ds, 75.50.Ee

It was first argued by Haldane that integer-spin anti-
ferromagnetic chains should have a finite gap above the
ground state, to a massive triplet excitation.! After some
initial controversy this has been verified by numerical
sirr:ulation 2.3 and by a rigorous proof for a solvable mod-
el.

CsNiCl; is a highly one-dimensional and highly
isotropic spin-1 antiferromagnet. Neutron-scattering
data above the Néel temperature is indicative of a gap
for the one-dimensional system.® Interchain couplings
lead to a significant dispersion for the gap in the direc-
tions transverse to the chains. They are also responsible
for Néel order at low enough temperatures. In Ref. 5
the ordered phase was analyzed by use of standard spin-
wave theory. On the whole this seemed to give a reason-
able description. However, in order to fit the observed
ordered-phase finite-gap excitation branch, it was neces-
sary to assume a rather large anisotropy parameter, too
large to be consistent with the observed canting angle or
spin-flip field. Furthermore, this excitation has a
different polarization than that predicted by spin-wave
theory.® In the disordered phase at higher 7, a simple
model of coupled chains was used to explain the ex-
istence of a finite gap and a transverse dispersion.

In this paper we will develop a more complete theory
of coupled chains which should be applied in both the
Néel and disordered phases. Whether or not the system
orders at 7 =0 depends on the strength of the interchain
coupling, relative to the gap of the single chain. In the
ordered phase the massive triplet of the single chain
splits up into two massless Goldstone modes and a mas-
sive “longitudinal mode” (corresponding to oscillations
in the magnitude of the sublattice magnetization) with a
finite decay width. We identify the observed finite-gap
branch with this longitudinal mode. An increase in the
temperature leads to a renormalization of the parameters
such that a transition to the disordered phase eventually
occurs. The gap of the longitudinal mode should vanish
at Ty. Above Tn the Goldstone modes and longitudinal
mode are combined into a triplet, with a temperature-
dependent gap which increases from zero at Ty.

As shown in Ref. 1, the large-s integer-spin chain,

H=X,[2JS;"S;+1+D(S?)?], is described at low ener-
gies by the O(3) nonlinear ¢ model, with Lagrangian
density

L= %5gl(3¢/8t)%/v —v(3¢/9z)?1 — Ds?(¢?)?.

(We set A =1, z is the distance along the chain.) Here
the triplet field ¢ obeys the constraint ¢2=1. ¢ and the
rotation generator, 1=¢ X ¢, represent the Fourier modes
of the spin operators near momentum z, the ordering
wave vector, and 0, respectively. S(z) = (—1)%s¢+1/v.
The continuum-limit field theory gives a description of
the low-energy modes occurring at these two points in
momentum space. The velocity of “light” of the quan-
tum field theory is that of spin-wave theory: v=4Js.
The coupling constant measures the strength of the
quantum fluctuations: g=2/s. A perturbative treatment
of this field theory involves expanding around the or-
dered state ¢ == (¢1,¢2,1). The fields ¢; and ¢, are mass-
less Goldstone modes, for D =0. However, it is known
on general grounds that the severe infrared divergences
of (1+1)-dimensional quantum field theory prevent the
spontaneous breaking of continuous symmetries, and in-
validate perturbation theory. Our understanding of the
actual behavior of this model is based on a combination
of renormalization-group arguments, the exact solution
in the large-n limit (where ¢ is taken to be an n-
component unit vector)” and the proposed exact .S ma-
trix.® The spectrum consists of a triplet of energy gap
=ve ™.

The corresponding correlation length, e™>>1 at large
s, justifying the continuum approximation. This map-
ping may not be very accurate at s =1 but should be at
least qualitatively correct and provides a useful phenom-
enological model. For s=1 the correlation length,
E==v/A, is about five lattice spacings, long enough to
partially justify the continuum approximation.

We now add a nearest-neighbor interchain coupling,
J'. For J'<J, and s> 1, we may represent the low-
energy degrees of freedom with k, == 0 or = by a set of &
fields. Representing the ith chain by a o field ¢;, we ob-
tain the system of coupled (141)-dimensional field
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theories:
L =ZL1(¢,-) —J's2<2)¢,-(z)'¢j(z), ¢i(Z)2=1 s
i v

where the sum is over the nearest-neighbor chains, each
pair occurring twice and L,(¢;) is the Lagrangian densi-
ty for a single chain. Since the model is now (3+1) di-
mensional, spontaneous symmetry breaking is possible.

However, we do not expect it to occur for sufficiently
small J' since the disordered phase is stabilized by the
existence of a finite mass. It is apparently not possible to
find the exact solution of this model but various more or
less reliable approximations are possible. One approach
is to take the large-n limit. This will be discussed in de-
tail elsewhere. A simpler and more intuitive approach is
to relax the constraint on the field ¢ and introduce an ex-
plicit mass term and a ¢* term for stability:

L=21(8¢:/81)%/2v —v(8¢:/82)/2 — (A*/2v) 7 —2Ds(97)2 — (A/4) (¢, $:) 2] — 2J’s<Z> $:(z)-9,(z).
i ij

A represents the mass gap which arises dynamically in
the nonlinear o model. Here we have rescaled ¢ by a
factor of /g so that S(z) = (—1)?(2s¢) 2+ (2/s¢) /2
x ¢/v. We see that the ground state will have spontane-
ous symmetry breaking (nonzero ¢) for J' bigger than a
critical value. For D=0, J's > kA?%/v, where k is a pure
number which depends on the lattice type. A controls the
size of the sublattice magnetization, {¢).

Of course other terms could be added to H as well, for
instance higher powers of ¢. This particular form is used
in the spirit of a Landau-Ginsburg Hamiltonian. The
five phenomenological parameters, v, J', A, A, and D can
be fitted to experiment (or numerical simulations) as dis-
cussed below.

We now consider the particular case of a triangular
lattice of chains as occurs in CsNiCl;. Following the
standard notation of Ref. 5, the chains are aligned along
the z axis with spacing c¢/2 between neighboring Ni
atoms. The primitive vectors for the triangular lattice
are a(1,0,0), a(— 1+ ,/3/2,0), and a(— %, —+/3/2,0).
We set ¢/2 and a to 1 so that the wave vector k is dimen-
sionless. k is related to the Q variables used in Ref. 5 by
Qu=ky /27, Qp =(—k,+~/3k,)/4zx, and Q. =k./x.

If we assume a three-sublattice spin ordering, with
(I) =0, corresponding to Néel order along the chains, and
(¢) having the values ¢; (i=1,2,3) on the three in-
equivalent chains, then the semiclassical ground state is
obtained by minimizing the energy per chain, per unit
length:

3
V(p:) =1 X (A% 2v+2Ds(97) 2+ 1ef/4]
i=1

+4J's[1 92+ 91 93+ 62 93] .

This classical potential is a special case of the one con-
sidered in Ref. 9. For D =0, the minimum of V has
¢; =0, for A2> 12J'sv. For A2 < 12J'sv, 7 =03 =(12J's
—AZ%/v)/x and the ¢; point in three different directions
lying in a plane with relative angles 27/3. We choose the
particular ground state ¢(x) =g¢y(sink;- x,0,cosk;" x),
where k= (27/3,27/~/3,0). For D <0, ¢, points along
the positive z axis and ¢, and ¢; make an angle & 0 with
the negative z axis which is less than z/3: cos6= % (1
+D/6J') (for —D <3J'). (This is identical to the re-
sult in Ref. 5 after the correction of a factor of 2 error.)

I

The spin components in the xy plane line up with the lat-
tice vectors due to weak sixth-order anisotropic terms'®
in ¥, which we omit from this discussion.

CsNiClj displays this type of order at T < 4.4 K. This
implies that the interchain coupling is sufficiently strong
to overwhelm the Haldane gap: 12J'vs > A2 The ob-
served value of 6 at T=1.6 K is 59 K, corresponding to
D/6J'=—0.0292. An estimate based on the spin-flop
field gives®!' D/6J'=—0.07. These values of D are
negligible and we will set D =0 in what follows. In order
to fit spin-wave theory to the observed finite-gap mode in
the ordered phase, a much larger “effective” D was used
in Ref. 5: D/6J'=—0.36. It was speculated in Ref. 5
that this larger “effective” D reflected the importance of
the one-dimensional many-body effects, i.e., the Haldane
gap. In this work we will explain this mode by taking
into account the one-dimensional effects and using D =0.

We now turn to the dispersion relation for this system,
in the ordered phase. This is calculated in the semiclas-
sical approximation where we simply expand the La-
grangian to quadratic order in the small fluctuations of
the fields away from their expectation values. The re-
sulting Hamiltonian can be diagonalized exactly. These
small fluctuations are of two distinct types: transverse
fluctuations where the magnitude of ¢ is unchanged but
its direction oscillates, and longitudinal fluctuations
where the direction is unchanged but the magnitude os-
cillates. In the semiclassical approximation, these two
types of fluctuations are decoupled. The transverse fluc-
tuations are precisely the usual excitations of spin-wave
theory, in a low-energy approximation, valid for J'<J
and k, =0 or n. The longitudinal fluctuations, however,
are not obtained in standard spin-wave theory, since the
quantum spins are of fixed length: S%2=s(s+1). Howev-
er, it is well known that upon making a renormalization-
group transformation, such ‘“hard spins” are usually
turned into soft ones. The spectrum of the one-
dimensional model in the low-energy, large-s limit is
known”® to consist of a triplet. Essentially the con-
straint on the magnitude of the field ¢ becomes ir-
relevant at low energies and the Landau-Ginsburg theory
gives the right spectrum. We expect this triplet to break
up into a pair of Goldstone modes plus a longitudinal
mode when we pass into the ordered phase; i.e., the sys-
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tem retains a ‘“‘memory” of its triplet spectrum. Al-
though the longitudinal mode will have a finite decay
width, the width-to-mass ratio vanishes as the critical
point is approached from the ordered side. This can be
seen from the fact that the zero-temperature phase tran-
sition is in the four-dimensional universality class and
thus the critical theory is the zero-coupling limit of the
Landau-Ginsburg model. The width-to-mass ratio is
proportional to the coupling constant, and so vanishes at
the critical point. This argument would apply equally
well to a three-dimensional antiferromagnet which was
sufficiently close to its zero-temperature disordering
transition due to frustration. Since A vanishes logarith-
mically slowly as the critical point is approached, the is-
sue of whether a given system will have a well-defined
longitudinal mode becomes a somewhat heuristic one.
We write the small fluctuations of ¢ as ¢; =(1+y;/
00) [y1, w2, wo — (wi+w3)/2¢0l, for i on the first sublat-
tice. y; and y» are transverse fluctuations and y; is lon-
gitudinal. On the second and third sublattice the param-
etrization is obtained from this by rotating by =+ 2xz/3.
By our expanding L to quadratic order in small fluctua-

Sk,0) «gk)>(1 — kD [1/0y(k)]18lo — 0, (k)]

tions we find it is diagonal with frequencies:
w1 (k) ={(k,) 2+ a0J's[3— f(k )} /2,

wy(k) ={(vk,) >+ 4avJ's[3+21(k 1} /2,

o (k) ={(wk,)2+4vJ's[9 — f(k, )] —2A3 12

where, following Ref. 5, f(k,)=cosk,+cos(—k,
+~/3k,)/2+cos(—k, —+/3k,)/2. Note that the intro-
duction of o-model variable doubles the length of the
unit cell in the z direction so that k, and k,+nr are
identified. k. runs over the entire paramagnetic Bril-
louin zone; folding it back into the antiferromagnetic
zone gives a total of nine branches, corresponding to a
triplet from each of the three chains in the unit cell. o
vanishes at k=0, and w; at k=t k;,. These three gap-
less modes correspond to the three Goldstone bosons re-
sulting from the complete breaking of the rotational
symmetry. The longitudinal mode has its minimum fre-
quency, A;=(24J'vs —2A%)"? at k=+k, This gap
vanishes when J' has its critical value at which Néel or-
der disappears.

The neutron-scattering cross section for k, near r, ig-
noring finite width effects discussed below,

+g()2(1+k2) § ; {[1/01(k' £ k)18l — 01 (k' £ k) 1+ [1/o, (k' + k)18l — 0, (K" k) 1},

where k'= (ky,ky,k, — ) and g(k) is the neutron-scattering form factor. The w; and w; terms are those of ordinary
spin-wave theory,’ in our approximation (J'<J, k, near z), but the w; mode is new. It has purely xz polarization
since it corresponds to fluctuations of the spins along their ordering directions. Thus it provides a possible explanation
of the finite-gap mode, observed in CsNiCly which could not be understood using conventional spin-wave theory. The

finite D spin-wave spectrum is shown in Fig. 1 and the
predictions of the present theory, together with the ex-
perimental data are shown in Fig. 2. From the observed
transverse modes we estimate v=4J=1.38 Thz,
J'=0.006 THz, essentially the same values as in Ref. 5.
The observed longitudinal gap, Ay = 0.19 THz, then im-
plies a gap for a single chain of A==0.285 THz, essen-
tially identical to the numerical finite-chain estimate® of
0.40(2J). Given the very approximate nature of our
model, this agreement must be regarded as somewhat
fortuitous.

The decay amplitude of the longitudinal mode is given,
to lowest order in the coupling constant A by the cubic
coupling between the longitudinal and transverse fields in
the Néel phase: Lin=y;X2= (y’a?/v—vy'a?)/so.
We find a decay rate at k=kq (full width at half max-
imum) I'=A./16¢5 =~ 0.09 THz, less than the experi-
mental resolution in Ref. 5.

We will discuss the finite-temperature behavior of this
model in detail elsewhere. However, the main con-
clusions are fairly transparent. Increasing the tempera-
ture will restore the rotational symmetry. This effect can
be described in terms of temperature-dependent renor-
malizations of the parameters in the Hamiltonian; in
particular, we expect A to increase with 7. An analysis
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FIG. 2. The spectrum predicted by the present theory with
D=0. T and L label transverse and longitudinal modes.

of the classical potential, with increasing A shows, in
agreement with experiment, that for D <0 an intermedi-
ate phase is first reached in which the z but not the x
components of the spins are ordered. At higher 7 the
paramagnetic phase is reached. This follows from the
analysis of Ref. 9, since our classical potential is a spe-
cial case of the one considered there. In the paramag-
netic phase, the spectrum consists of a massive triplet,
with @, =[(vk,)2+A*+8f(k,)J'vs]1'?, and hence a
gap: A, =[A?—12J'vs]"?, where all parameters are
temperature dependent. A, varies with T, and in particu-
lar should vanish as T— Ty, the upper Néel tempera-
ture. The formula for w, is identical in form to the one
in Ref. 5. A best fit with the data occurs with
J'v(T)=0.00153 THz, A(T)=0.32 THz, at T=7-10
K, the same value of A estimated in Ref. 5. Thus A has
renormalized up from 0.28 to 0.32 and J' down from
0.00207 to 0.00153. This is a remarkably gradual re-
normalization over a temperature range of about 1 THz.

Another prediction of our model is the maximum
value of J'/J for which the system will be paramagnetic
even at 7=0 due to the one-dimensional fluctuations:
J'/J <(A/J)*/48. By use of the value found above,

(A/J) = 0.8, this gives J'/J <0.013. In CsNiCls, J'/J
=0.017. Ni(C,;H;sN;),NO,ClO4, has J'/J==0.0004
and may represent an example of such a quantum disor-
dered system. '2
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