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Nentron-Di8'raction Approach to the Atomic Decoration of the Al-Mn Icosahedral Qnasicrystal
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Neutron-diAraction data were obtained from single-phase icosahedral powder of the system
A174Si5Mn2I and its modification by isomorphous substitution on the Mn sites. Amplitudes and phase
differences of the partial structure factors (F~~, FM„) were determined. From their Q~ dependences,
and within a strip-projection approach, phases were reconstructed. Atomic densities calculated in the
physical 3D space show that Mackay icosahedra, the structural units usually invoked for quasicrystal
models, do not emerge as the basic ingredients of the atomic arrangements.

PACS numbers: 61.55.Hg, 61.12.Gz, 61.50.Em

The discovery of systems with diffraction patterns ex-
hibiting the icosahedral symmetry' forbidden in classical
crystallography has recently been a challenge for theore-
ticians and experimentalists who have tried to find mod-
els explaining the observed features. In fact, mathemati-
cians had introduced, early in the century, quasiperiodic
and almost periodic functions and it is easy to show that
these families of functions Fourier transform into dense
sets of sharp Dirac-type peaks. Moreover, incommensu-
rate phases were at the time an already known example
of nonperiodic structures showing sharp diff'raction
peaks. MacKay ' had also drawn attention to two- and
three-dimensional Penrose tilings (3DPT) and their
diff'raction patterns which were qualitatively similar to
that observed by Shechtman eI; al. ' Since then,
numerous examples of metallic alloys have been
discovered, the atomic structures of which display "for-
bidden" symmetries. The debate has resulted in a
wealth of published papers. A bibliography of quasicrys-
tals, a collection of significant reprints, and a recent.
workshop have updated the state of knowledge on the
subject. Basically, successful descriptions of quasi-
periodic geometrical networks have been achieved with
use of a variety of diff'erent schemes for generating them:
space tiling by two rhombohedral cells with matching
rules, inAation-deAation procedure, multigrid or dual
methods, and strip-projection or cut-projection ap-
proaches. The latter in particular shows that any quasi-
periodic network has actually hidden periodic transla-
tions which can be recovered if the structure is properly
described in a higher-dimensional space. This is a simple
consequence of the fact that icosahedral point-group
symmetries m35 are compatible with a six-dimensional
space group but not a three-dimensional one. Once gen-
erated by one of the above methods, a long-range-
ordered quasilattice without periodicity is not the end of
it. We still have to describe where the atoms are located
to specify completely the structure. Experimental ap-
proaches and modeling have both contributed to the

point which has been extensively reviewed. ' The 6B
approaches of atomic decoration are probably the most
generic and global and are, actually, a direct extrapola-
tion of conventional crystallography methods. Following
this scheme, a 6B periodic model has recently been pro-
posed" for the Al-Mn-Si icosahedral quasiperiodic crys-
tal, resulting from an embedding of the cubic e structure
into 6B. However, the large number of geometrical pa-
rameters to be determined and folding eAects due to the
presence of several chemical species (Al, Mn, Si),
presumably sitting in diA'erent atomic positions, make
the comparison of the model to diffraction data a little
doubtful. Moreover, the hexagonal p-MnA14 phase'
should have been better used as a related crystalline
structure.

The purpose of the present paper is to show that so=

phisticated techniques, namely contrast variation eiFects
with neutron difI'raction, are a requisite for deciphering
raw data in the framework of a %-dimensional space.

Quasicrystalline phases of the Al-Mn system can be
produced by melt-spinning techniques, as described in
detail in previously published papers. ' Finely powdered
rapidly solidified A174Si5Mn2~ alloys, and their modifi-
cations resulting from Fe an/droCr substitutions to Mn,
were obtained almost as single icosahedral phases. Only
a trace of a hexagonal phase was detected in the unsub-
stituted alloy.

High-resolution neutron-diff'raction data have been
measured in the same conditions as reported else-
where' ' for other quasicrystalline alloys. Peak posi-
tions and integrated intensities were obtained from
Gaussian fits to the peak shapes. ' ' The positions g~~

of the reflections are in an ordered sequence of peaks re-
lated to two integers % and M by the expression
Q~~(A ') =0.359(N+rM)'~ within a relative accuracy
better than 3 x 10;% and M are defined in Ref. 16 and
~ is the golden mean. Such a sequence of positions is
equivalent to a six-integer indexing in 3B ' related te a
6B icosahedral primitive lattice with parameter equal to
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6.497 A. Intensities were carefully corrected for absorp-
tion, for Debye-Wailer thermal effects, and for Lorentz
factor. Peak positional powder data can be reconverted
into 3D diffraction QII vectors by distributing the total
integrated intensity over the corresponding set of
equivalent reflections' ' (indexing and multiplicity be-
ing accounted for). The I(QII) intensities may be written
as

where the b's stand for the neutron-scattering lengths of
aluminum and transition metal atoms, respectively, and
the F 's are the partial structure factors defined by

FAI =+exp(iQI~I rAl), FT =+exp(iQII rT) .
Al T

An equivalent expression for I(QII) is then

I(QII) =bAl IFAl I
'+bT'

I Fr I

'

+2' Alb T I
FAl I I FT I cos&y,

(2)

in which h, p is the phase difference between FAl and FT.
Obviously, Eq. (3) contains

I FAI I, I FT I, and I Ap I
as

three unknown quantities which can be determined, for
each QII reflection, by one measuring three independent
intensities I(QIl, bT) with three samples strictly identical
but for their neutron-scattering contrast bT on the
transition-metal sites. Rescaling procedure and self-
consistency tests using actually more than three contrast-
ed samples have been extensively described and probed
in previously reported works. ' ' ' '

The raw product of the neutron-diff'raction data and
contrast variation is then the triple set

I FAI(QII) I,
IFT(QII) I, and Ihp(QII) I. As already observed with

other icosahedral alloys, ' the phase differences Ap mea-
sured in the present work happened to be all equal to 0
or z within experimental accuracy. As a consequence,
the measured partial structure factors FA~ and FT of the
icosahedral phase can be expressed by pairs of real num-

bers, either of same or opposite signs, multiplied by a
common phase factor exp(i@). For a given pair, howev-

er, the sign of FA~ and FT and their common phase
N(QII) cannot be deduced from diffraction data and a
phase-reconstruction procedure must be discovered if one
wishes to proceed beyond the usual Patterson function
analysis. " This can be obtained as a consequence of
quasiperiodic structures having hidden translational sym-
metries in a higher-dimensional space.

In the formulation of the strip projection method one
starts with a 6D primitive cubic lattice in R6 which is
projected onto two orthogonal well chosen 3D subspaces
R 3II and R 3j. The quasiperiodic crystal consists in pro-
jection onto R3II of those points of the cubic lattice which
are within a strip S6 extending infinitely parallel to R3II
but having a finite cross section A 3& in R 3J called the
acceptance function. The 6D diff'raction pattern of the
infinite real 6D cubic lattice would be a 6D cubic distri-

bution of Dirac functions at vectors Q6. The 6D
diff'raction pattern of the strip S6 would also be a 6D dis-
tribution of extended spots centered at Q6, still Dirac-
like when scanned at QII vectors in the 3D reciprocal
space associated with R3II but broadened in the orthogo-
nal 3D reciprocal subspace associated with R3& because
of convolution with the Fourier transform G(Q~) of the
acceptance function A3& (Q& and QII are the projections
of Q6 in the two 3D reciprocal subspaces associated with
R3J and R3II respectively). In such a formation the par-
tial structure factors FA~ and FT actually determined in
3D can be expressed, for each Al or T site, as

FAI(QII) fAI(Q6)GAI(QJ ),
FT(QII) fT(Q6)GT(Q ),

(4)

in which f and G stand for the structure factors of the
infinite periodic structure in R6 and the Fourier trans-
form of the pertinent partial acceptance functions in

R3~ respectively. Let us first analyze the data corre-
sponding to FT(QII)=fT(Q6)GT(Q&), i.e., the partial
structure factor of the transition-metal atom subnetwork.
The measured amplitudes

I FT I
of this partial structure

factor, as a function of Q~ =fr(Nr —M)/2(2+i)] '

go to zero for Q~ values of about 0.7 (with 2n/a taken as
unit length where t2 =6.497 A is the lattice parameter of
the 6D cubic lattice). With the assumption that the ac-
ceptance function A3& can be approximated by a sphere
of radius, R, would give the expression

sin(2zQ R, )
G Q~ CX:3R)

2zQ~R, ' (5)

which turns from positive to negative for Q& =0.7 if
R, =102a. This radius is not very far from the one
sphere (1.013a) having the same volume as the rhombic
triacontahedral acceptance function corresponding to the
unit cell of the 6D cubic lattice, when the immersion of
R3II into R6 generates the six fivefold directions by pro-
jection of the six cube edges. This is a very strong indi-
cation that the manganese (or T) subnetwork in R3II can
be generated by projection of those lattice points of a 6D
primitive cubic lattice which are within a strip having
the same cross section as the 6D cubic unit cell in R3J.
The consequences are twofold.

First, the projected points into R3II are then the ver-
tices of a 3DPT ' which defines completely the Mn atom
subnetwork. Second, in the expression FT (QII)
=fT (Q6) GT (Q~ ), the factor fT (Q6) becomes simply
the structure factor of a 6D primitive undecorated cubic
periodic lattice and, thus, is a set of constant real num-
bers. As the Fourier transform of a cut function,
GT(Q&) is also a real number. The very important con-
clusion is that FT(QII) can only be real numbers and so
the FAl(QII) are also since it has been deduced from
difI'raction data that phase diff'erences between FT and
FA~ can be only 0 or z. At this stage, FT and FA~ are
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then real numbers whose relative sign is known from
diA'raction data for each measured reflection. But if
FT(Q&) is compared to a GT(Q~) as given by Eq. (5), it
has to be positive for Q & 0.7 and negative for
0.7 & Q & 1.2 which, combined with the FT/FAi relative
sign, removes the remaining underdetermination. The re-
sulting FA|(Qi) and FT(Q&) with their "reconstruct-
ed" phases are represented in Fig. 1 and compared to
G(Q~) functions of the type described by Eq. (5).

An obvious procedure to generate the real atomic
structure is to Fourier transform the partial structure
factors according to

FIG. 1. Q& dependences of the Al and Mn partial structure
factors of the quasicrystalline structure: data (+) and the
sphere approximation (full line). Phases have been "recon-
structed" as explained in the text. Radii R, of the spherical
acceptance functions are given. R, (A1) and R, (T) are in a ra-
tio roughly equal to r.

pT(r) =QFT(Qii)exp(iQii. r),
Qll

p&1(r) =QF~|(Qii)exp(iQI r),
Qll

in which pT and pAi are the partial 3D atomic densities
at r. Then, the resulting atomic coordinates, occupation
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FIG. 2. Samples of density maps obtained by direct Fourier transforms of the measured partial structure factors (with phases
reconstructed). These maps are 2D cuts of 3D atomic density, perpendicular to fivefold (e) and twofold axis (p), of the 3D partial
atomic densities for Al and Mn as indicated. (Level Z of the cut is given when relevant for comparison. ) A perspective view of one
prolate rhombohedron has been drawn for the sake of illustrating the transition-metal subnetwork.
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fractions within each subnetwork, and distances from the
origin can be calculated. ' Typical atomic density maps
representing 2D cuts of pT(r) are shown in Fig. 2. A
careful examination of these results allows interesting
conclusions to be drawn regarding the atomic structure.
The manganese atoms are obviously at the vertices of a
3DPT with 4.6-A edges. But occupation fractions for
some positions are smaller than 1. For instance, the two
vertices at the short diagonals of the oblate rhombohe-
dra, separated by 2.59 A, are scarcely occupied simul-
taneously by Mn atoms. The aluminum atoms seem to
be more poorly located. However, it appears that the
major Al sites are

(i) at a few vertex positions, shared with Mn atoms;
(ii) near positions situated at 2.57 and 6.78 4 from

the vertices on the triad axis of the prolate rhombohedra
(10.96 A for this triad axis and 13.55 A if an oblate
rhombohedron is aligned properly); and

(iii) near positions on the faces of the prolate and ob-
late rhombohedra, dividing the long diagonals of the
rhombi into segments of 2.98 and 4.83 A (7.81 A for the
diagonal).

These different Al sites are never simultaneously occu-
pied in a given rhombohedron of the 3DPT. This is for-
tunate for obvious steric constraints and introduces a
"chemical modulation" of the structure which may be
welcomed to allow stability of the whole architecture.
Moreover, it can be demonstrated that "natural" match-
ing rules result also from this occupancy modulation.

The structure obtained in the present work is not a
"model": The atomic positions have been deduced from
diffraction data without any of the crystallochemistry as-
sumptions which are usually used to build "reasonable"
structures. It differs quite deeply from the so far accept-
ed schemes which have also vertex sites for Mn but have
mid-edge sites instead of face sites for Al. Thus, the
MacKay icosahedron does not appear any more as the
basic structural unit of the quasicrystal structure and
some atomic arrangements are introduced which cannot
be found in related crystalline compounds. Some simi-
larities may, however, be found in models proposed by
Henley or Sachdev and Nelson.

The next step in the structural specification is now to
find a refinement method derived from the conventional
Fourier-diff'erence technique. This is actually in progress
and will be published, along with tables of atom coordi-
nates, in a forthcoming paper.
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