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We suggest a unifying perspective of various manifolds subject to quenched correlated disorder. The
new picture incorporates seemingly disparate problems as domain walls in impurity-stricken Ising mag-
nets and directed walks upon random lattices. Using Flory-style arguments and a functional nonlinear
renormalization group, we obtain new results, including the random-bond interfacial roughening ex-
ponent {rp= L ¢, where ¢=5—d, which we believe to be exact, as well as a conjecture for the (2+1)-

dimensional directed polymer index &4+ =35 .

PACS numbers: 64.60.Ak, 02.50.+s, 05.40.+j, 61.41.+¢

The statistical mechanics of polymers and interfaces in
the presence of quenched correlated random disorder is
an extraordinarily rich subject, not lacking in controver-
sial theoretical subtleties and frequently begetting
healthy, though sometimes bitter debate. A recent mani-
festation of this problem, due to Kardar and Zhang,1
concerns the scaling properties of directed polymers in
random media. Such polymers are highly anisotropic
objects, and are essentially directed walks biased along a
single preferred direction with disorder-induced fluctua-
tions constrained entirely to the transverse dimensions.
The scaling of these transverse fluctuations is the funda-
mental issue at hand and raises, rather naturally, very
general questions of optimization theory,? such as
minimal-energy paths. In this regard, it may even shed
light on the apparent ultrametric tree structure exhibited
by river basins, blood vessels, and neuronal networks. >
Furthermore, the directed polymer problem is mathe-
matically equivalent to a host of others, among which are
interfacial growth dynamics of Eden clusters, large-time
behavior of randomly stirred fluids asymptotics of driven
diffusion, and the evolution of Sivashinski flame fronts.
The basis of this equivalence can be traced to the ubiqui-
ty of the Burgers’ equation,* the simplest generalization
of the diffusion equation possessing the requisite non-
linearities. Because of the large payoff, much effort>®
has been devoted to the dynamic scaling properties of
this equation.

Unfortunately, the directed walk amidst quenched im-
purities has proved to be quite a difficult problem,
indeed! Without disorder, the matter is simple. Trans-
verse fluctuations scale with longitudinal length as
| z| ~x¢, with the trivial random-walk index {rw =1,
independent of the number of perpendicular dimensions
n. Yet, with pinning impurities present to enhance fluc-
tuations, the roughening exponent is known exactly only
for n =1, where the polymer behaves as the interface of
a 2D Ising model subject to random-bond disorder. For
this case, complementary approaches®® have fixed
{uw=1=%. Early numerical work by Kardar and Zhang'
for n=2,3 hinted that this value might be superuniver-

sal, as in the pure case. In fact, McKane and Moore®

have even suggested a mechanism justifying why this
might be so. Nevertheless, subsequent, more precise
computer work by Wolf and Kertész'® on Eden growth,
when translated into directed polymer language, cast
doubt on this notion, yielding ¢&,=5,=0.60=+0.02,
{n=3=0.5710.05, and the conjecture that ¢(n)=(n
+1)/(2n+1). Studies>® of the Burgers’ equation re-
veal, however, that for n>2, ¢ is either trivial or
governed by a nonperturbative fixed point, rendering a
smoothly varying wandering exponent an unlikely pros-
pect. Interestingly, though, Derrida and Spohn'! have
recently solved the directed polymer problem on a Cay-
ley tree and their findings indicate that the random-walk
value may be retrieved in the infinite-dimension limit.

Somewhat orthogonal to this directed polymer prob-
lem is that of domain walls roughened by quenched im-
purities.'?”!* Here one considers an interface z=z(x)
separating two phases of matter in d =d'+1 dimensions
and studies the fluctuations incurred by random disorder.
The associated roughening exponent, defined via
|z| ~|x]|¢ describes height fluctuations as one scales
lengths in the d'-dimensional basal plane. One aspect of
this subject, the random-field (RF) Ising model, was re-
cently the subject of controversy. The crux of the matter
concerned the lower critical dimension of the system,
which was determined by the condition!’ ¢rp(d)) =1.
All parties agreed that above five dimensions, random-
ness was irrelevant as (rp(d=5)=0. However, for
€=5—d >0, there were two outspoken camps. The
first, of the dimensional reduction persuasion,'® believed
{rr=¢/2, involving a simple shift from the correspond-
ing pure problem, where thermal fluctuations yield an
exponent ¢ty =(3—d)/2. The opposition'” placed great
faith in Imry-Ma domain-wall arguments which gave
¢rr=¢/3. Independent investigations'® have since con-
spired to fix d; =2, thereby confirming the Imry-Ma pic-
ture. Nonetheless, it remained ill-understood precisely
why the Flory-style domain-wall argument worked so
well for RF’s, since it is nothing but a refined mean-field
treatment.
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In the midst of all this, Fisher!® studied the related
question of interface fluctuations in the presence of
random-bond (RB) disorder and using functional
renormalization-group (RG) methods numerically es-
timated the roughening exponent to be {rp==0.2083¢.
Of course, for d =2, the interface and directed polymer
problems become one and the same, and Fisher’s esti-
mate {,=; = 0.625 comes quite close to the correct value
2 discussed earlier. Below, we reproduce the latter ex-
actly as the special case of a more general result.
Surprisingly, the RB problem appears unamenable to an
Imry-Ma approach. In d =2, both Kardar'? and Natter-
man'?® have addressed this mystery—they consider a
model with correlated randomness that interpolates be-
tween the RF and RB situations. For sufficiently long-
ranged correlations (those falling off no faster than some
critical power law), they established the validity of a
Flory-determined ¢, while for short-ranged correlations
the wandering exponent sticks to its RB value 3.

It is the purpose of this paper to provide a new per-
spective on these issues by suggesting a unified picture of
diverse manifolds in quenched random media. To this
end, we introduce the Landau Hamiltonian for an n-
component vector field z(x) with d'=d — 1 dimensional
support, subject to correlated disorder ¥ (z) that pins the
field,

H =fdd'x{(v/2)(Vz)2+ oV(z)}.

Here v is the tension parameter discouraging fluctua-
tions and o gauges the strength of the random potential.
For the convenience of readers most familiar with the
problem of interfaces subject to quenched randomness,
we will continue the custom of using d' and d — 1 inter-
changeably, although this is somewhat antithetical to our
unified (n,d') picture. Clearly, d'=1 corresponds to a
directed polymer in n+1 dimensions, while n =1 yields
the interface problem in d'+1 dimensions. We consider
correlated randomness that is Gaussian with zero mean
and variance

V(z,x)V(z x'))=8"(x—x)R(@z—2').

For the case of uncorrelated impurities (e.g., RB inter-
face problem) the bare R(z) =§"(z), but the fixed-point
function R&r(z) that dictates the scaling properties is
expected to be smoother, though still short ranged (see
later). By contrast, the RF Ising model involves, in our
formulation, correlations that increase linearly”'19 at
large distances. With functions smooth at small argu-
ment and behaving asymptotically as R(z)~ |z| ~#",
straightforward dimensional considerations permit us to
determine the critical dimension above which the ran-
domness is perturbatively relevant, in the RG sense. Un-
der the rescaling, x— Ax and z— A%z, it is apparent that
the parameters v and o have scaling indices y,=2¢{+d
—3 and y,=% (d—1—p¢n), since the assumed vari-
ance form dictates V— A ~ @~ 1*8/2y With no ran-

domness, a scale-invariant theory necessitates y, =0, so
that {=¢y=(3—d)/2, the free (or thermal) value allud-
ed to above. Disorder is perturbatively relevant if y, >0
at this fixed point; that is, for d > d.(8,n) =(2+38n)/
(2+p8n). Note that for the interface problem (n=1),
we retrieve the accepted values!? 4dRB(1,1)=3% and
dRF(—1,1)=—1, while for directed polymers (d=2,8
=1), we find n.,=2, as anticipated by work>® on the
Burgers’ equation. It is our belief that for the physical
systems of interest, the wandering exponent does not typ-
ically assume its free value below d., but rather is con-
trolled by a strong disorder nonperturbative fixed point.
This has been suspected' in the directed polymer prob-
lem, but now in the unified scheme, also appears prob-
able for interfaces. As a first step, Flory arguments,
which require both terms of H to scale in the same
fashion, allow us to fix {r(B,n) =—(5—d)/(4+pn) in
the regime of perturbative relevance (d >d.). At and
above d =5, {=0 and the manifold is not roughened by
the impurities. Though this Flory prediction for the RB
interface problem ¢r(1,1)=¢/5 is incorrect,'? yielding
an erroneous + in d =2, it does give the Imry-Ma value
¢(r(—1,1)=¢/3 for random fields. We shall see below
that, for a given value of n, the Flory theory is only valid
for a range of 8. In Fig. 1, we gather our results and
make manifest the intended scheme for the specific case
of RB disorder.

An alternative method for the determination of the
wandering exponent when weak randomness is perturba-
tively relevant is via the functional renormalization
group. As pointed out by Brézin and Orland,?° the func-
tional RG is nothing but a calculation of the effective ac-
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FIG. 1. The effects of random-bond disorder upon manifolds
described by an n-component vector field with d'=d —1 di-
mensional support. Two apparently unrelated problems,
directed polymers and wandering domain walls, are highlight-
ed. Below five dimensions, disorder is perturbatively relevant
and the manifolds are roughened by the pinning impurities.
For sufficiently low dimensionality, strong disorder nonpertur-
bative effects can control the fluctuations. Flory arguments
determine the boundary between these two regimes.
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tion to one-loop order, followed by differential length x— x(1+6/) and field z— z(1+ ¢5/) rescalings, to note how the
interaction, in our case R(z), behaves under the infinitesimal dilation. Using replicas to deal with the randomness
(averaging over the disorder V introduces R as the potential amongst the replicas), one readily derives the functional

differential recursion relation describing the flow of R(z):

OR

(n—1) R”?

(n—1) R

— =(e—4)R+zR'+ 3 (R")*—R"R"(0)+ —=————"—R"(0)+ - - - .

a/ 2

Here, primes denote derivatives with respect to z. The
first term follows from the dimension of R, the second
from the dimension of z, and the remainder is due to ex-
pansion of the one-loop logarithm. The ellipsis denotes
discarded higher powers in the Taylor series. We are at
liberty to fix the scale of R, so we set R”(0) =—¢ and
search for the invariant fixed point functions (FPF’s)
which satisfy 8,R*(z)=0. Fisher, who studied the
above partial differential equation for n =1, noted that
the Imry-Ma exponent {rr=¢/3 follows from the RF
FPF that grows linearly at large z. This is nothing but a
specific example of the linearly truncated, essentially di-
mensional RG that gives rise to the Flory exponents
¢(r=¢/(4+pBn) for FPF’s behaving asymptotically as
R*~z 7P We next make a search for the FPF associ-
ated with short-range (SR) correlations. With a Gauss-
ian in mind, it is easy to show that the SR FPF falls off
as R (z)~ez 47" Sexp(—¢z2%/2¢). This damped
power law is the basis for many of the results that follow.

Consider first the interface problem (n =1). We make
the suggestion, entirely in keeping with the basic tenets
of critical phenomenon, that provided the correlations in
randomness are sufficiently long ranged (ie., small
enough B), the mean-field Flory theory is correct and the
roughening exponent is (r=¢/(4+p3), as described
above. Nevertheless, as the correlations become progres-
sively short ranged, one eventually reaches a critical S,
such that the scaling is controlled entirely by the FPF
R& (z), representing a Gaussian damping of the critical
algebraic decay. For B> ., the index ¢ sticks to the
value characteristic of this SR FPF (the crossover ex-
ponent is negative) and abandons the Flory formula.
Determination of this critical value is easy since it is only
at B, that ¢ simultaneously satisfies the constraints of
both Flory and nonlinear functional RG treatments.
That is, a glance at R&r implies . =5 —¢/&sr. Substi-
tution of this equation into the Flory formula reveals
(sR=%¢cand B.=1. Joining this new result to the Flo-
ry theory we know to be correct for B < ., we summa-
rize our findings?! in Fig. 2(a). The interesting new pre-
diction is that {grp=%¢, compared to the Imry-Ma
determined ¢rrp=¢/3. As suspected, interfaces are
roughened less by RB’s than they are by RF’s. Correlat-
ed disorder incurs greater wandering.

We stress that, though based on the same differential
equation, the present methodology differs greatly from
that of Fisher, whose procedure involves numerical in-
tegration of the partial differential equation for R&z (z)
from the origin (where neglect of the higher-order terms
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in the ellipsis is not justified) to large z with {sr the sen-
sitive eigenvalue insuring an asymptotically vanishing
FPF. By contrast, our use of the partial differential
equation is limited strictly to its domain of validity. We
seek only the functional form of the tail, so the trunca-
tion is legitimate. Indeed, we believe {rp = 2 ¢ to be ex-
act as higher-loop contributions to the effective action
should leave the tail unaltered. Lastly, our assumptions
concerning the existence of a ., continuity of ¢, and the
vestigial link of R to the critical power law, appear
quite natural.

The above scheme is corroborated by the fact that for
€=3, we retrieve the exact results of Kardar'? and
Natterman, Cn=1= 2 and Be= L for the directed po-
lymer problem in 1+1 dimensions. What about directed
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FIG. 2. (a) Wandering exponent ¢ for interface roughening
as a function of B, which describes the falloff of impurity corre-
lations. Flory theory is correct only for sufficiently long-ranged
correlations. Beyond the critical value .= %, a single SR
fixed point function dictates the scaling behavior and ¢ sticks to
the RB value 2¢/9. (b) Directed polymer index in n+ 1 dimen-
sions. The result &,=, =2 s exact. Furthermore, a unique
FPF determines ¢ for the entire interval between n.; =% and
nea =2.
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polymers (d'=1) with n=1? As mentioned earlier, any
anomalous scaling ({= ¥ ) for n > 2 is strictly nonpertur-
bative in nature and therefore beyond the reach of our
functional RG. Hence, we restrict ourselves to n <2,
envisioning an expansion about the well-understood case
n=1. In addition, we note that analyses>® of the
Burgers’ equation show a unique FPF controlling the
scaling in the range 3 <=pn =<2, the character of this
function revealed as n— . For this reason, we conjec-
ture that throughout this interval, the wandering ex-
ponent will stick to its value at n.;=%. From the non-
linear RG, we know that the SR FPF is a Gaussian
damped power law with 8. =4+n —3/{sg. Of course, at
Bc, the Flory formula {r=3/(4+pn) is also satisfied.
Simultaneous solution yields ¢sg =3(n+1)/(n+2)? and
B.=n/(n+1). Note that 8. <1 for arbitrary n. Hence,
the rather cavalier manner in which we characterized §-
function correlated disorder via naive dimensional con-
cerns (=1 for RB) was done with complete impunity,
since the nonlinear RG maps all bare functions falling
faster than . onto the same SR FPF—a beautiful mani-
festation of the renormalization group. Figure 2(b) do-
cuments the gentle decline of the directed polymer index
¢(n) ={sgr with increasing n, as well as the break in slope
that we anticipate at n.;=3%. These considerations,
though quite humble, represent the sole analytic work
extent for finite n=1 and lead us to the prediction that
v =133 =0.61, a value entirely consistent with the re-
cent Monte Carlo simulations'® of Eden clusters. It
would be of much interest to call upon additional non-
perturbative tools, such as real-space renormalization or
instantons, perhaps, to provide a further test of this re-
sult and to gain greater insight into the many-
dimensional directed polymer. We are presently investi-
gating these possibilities.
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