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Stochastic Resonance in Bistable Systems
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The relaxation properties of a stochastic bistable system perturbed by a periodic low-frequency forcing
term is investigated by means of analog simulation. The so-called stochastic resonance phenomenon is
revealed under diverse experimental conditions. Its dependence on the parameters of both the periodic
perturbation and the forced system is explained theoretically.

PACS numbers: 05.40.+j, 02.50.+s

It has been noticed' that the output signal from a sto-
chastic bistable system may be modulated in time by ap-
plying an external periodic perturbation. Such an effect
is apparent even when the perturbation is weak enough
not to appreciably affect the noise-induced switch pro-
cess. The interplay of intrinsic noise and periodic driving
mechanism results in a sharp enhancement of the signal
power spectrum within a narrow range about the forcing
frequency. This observation was explained by Benzi et
al. by relating the forcing frequency with the switch
rate (Kramers rate) of the unperturbed system between
two adjacent stable states. To distinguish this phen-
omenon from the well-known dynamical resonance one
speaks of stochastic resonance (SR). '

Recently, McNamara, Wiesenfeld, and Roy pointed
out that a more suggestive signature for SR is given by
the signal-to-noise ratio (SNR). They measured the
SNR for an optical bistable device (a bidirectional ring
laser), showing that it increases dramatically with the
noise intensity, peaks at switch-energy-to-noise-intensity
ratio equal to two, and fades away smoothly for stronger
noise intensities.

The main focus of this Letter is on two important
features of SR which are essential for a complete un-
derstanding of the phenomenon, namely, its dependence
on the frequency and intensity of the periodic modula-
tion and its persistence under a variety of physical cir-
cumstances. Our investigation is based on analog simu-
lation techniques, the most sophisticated version of
which proved to be more accurate than numerical simu-
lation and also allows one to reproduce more realistic ex-
perimental conditions than in previous studies. ' The
results reported below refer to the simulation of a one-
dimensional quartic double-well potential V(x) = —ax /
2+bx /4, subject to both fluctuation and dissipation
The periodic driving mechanism is described by a
sinusoidal forcing term (with arbitrary phase) A (t)
=4 cos(A t ). The corresponding stochastic differential
equation reads

x = —yx+ax —bx

+cocos(At)+f(t),

where a, b, and y are positive and the Gaussian, zero-

mean valued noise f(t) is assumed to be 6-correlated,
i.e., (f(t)f(0)) =2yD B(t)

In practice, f(t) is simulated by means of a correlated
fluctuating voltage, the correlation time of which (50 ps)
is negligible compared to the characteristic time scales of
the analog circuit (& 1 ms). In particular, the deter-
ministic resonance frequency about the potential minima
is vo =coo/2n. =1650 Hz. For the setup of our simulation
apparatus we refer the reader to a previous publication.
The output signal analysis was performed by means of a
Data 6000 waveform analyzer. This instrument digitizes
(with 14-bit resolution) and stores (with a record-buffer
length of up to 4 kilobytes) analog signals which are then
processed in real time to compute the statistical quanti-
ties of interest. In the present case, the parameters y, D,
8, and 0 may be varied within a very wide range of
values. This allowed us to verify the occurrence of SR in

both the overdamped and underdamped regime for any
value of the forcing frequency v„=A/2x smaller than
the Kramers rate for the unperturbed (bistable ) system,
2p~.

A way of characterizing the notion of SR proposed by
Benzi and co-workers' is to look at a discrete stochastic
process defined indirectly by Eq. (1). Let T(n) denote
the first-crossing time of the nth sampling record of the
output signal x(t) T(n) can b. e measured by means of
the Data 6000 (after arming its internal trigger suitably)
and stored in a record buffer for further processing. The
first-crossing time thus determined corresponds to
measuring the switch time of x(t) between its stable
values + x . (In our analog circuit x has been chosen
equal to 7.3 V.) In Fig. 1 we display the distribution of
T(n), N(T), taken over a set of 5000 records for several
values of 0 with y and D fixed. At A =0 we recover the
usual distribution of the first-passage times, T~
x exp( —T/2T~), where T~ is the reciprocal of the Kra-
mers rate. For the parameter values of Fig. 1(a)
T~ =14.8+ 0.1 ms, in good agreement with the relevant
theoretical predictions. In the presence of the deter-
ministic forcing term A (t), instead, the number of cross-
ings peaks at T=x/A. This implies that the process
x(t) switches almost periodically between its stable
minima with frequency v&, as first observed in Ref. 1.
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FIG. 1. First crossing-time distribution N(T) for (a) A =0,
(b) Ax =0.5AV and v~ =30 Hz, and (c) Ax =0.5AV and
v& =6 Hz. Other parameter values; x =7.3 V, v0=16SO Hz,
AV/D=3, and y/coo=0. 64. The estimated error is less than
S%.

FIG. 2. The SNR vs D at several values of Ax (dashed
line, 0.22AV; solid line, 0.5AV; dotted-dashed line, 0.66AV)
and v& (squares, 15 Hz; crosses, 30 Hz; lozenges, 500 Hz).
The other parameter values are as in Fig. 1. The relevant aver-
ages have been taken over 5000 digitized spectra (Ref. 5).

The peak of 1V(T) reaches its maximum for v„=30 Hz.
For lower forcing frequencies the SR peak smoothes out,
whereas in the opposite limit it merges into the exponen-
tially decaying branch of N(T) about T=O. Further-
more, at high frequencies [Fig. 1(b)] side peaks located
about the odd multiples of n/fl show up in analogy with
the subharmonics of dynamical resonance in nonlinear
systems.

A diferent characterization of SR has been suggested
by the authors of Ref. 4. Let us consider the continuous
process x(t) in (1). The background of its power spec-
trum S(v) increases with D. A 6-like spike correspond-
ing to the appearance of SR is located in v& and its in-
tensity grows with D up to a maximum for about
pg = v„[like the peak of N(T)] and then plunges into
the background again for larger D. The SNR is the best
candidate to quantify the eAect of interest. However,
the experimental determination of the SR peak S(v„)
requires some caution because its height depends on the
analyzer sampling time. Throughout the present Letter
all of our measurements of S(vo) are referred to a con-
ventional bandwidth h, v, pt 5 Hz. No such difhculty
arises for the remainder of S(v) because of the Wiener-
Khintechine theorem. The background of the power
spectrum about v„, B(v„), is determined by linear inter-
polation of the discretized S(v) after subtracting the
point representing the SR spike. in Fig. 2 we display our
results for the SNR, R(A, D) =S(v„)/B(vo), as a func-
tion of D at diIt'erent values of v& and A.

The new features of the SNR we detected experimen-
tally can be summarized as follows: (i) the curve
R(A, D) vs D peaks at AV/D =2, where AV is the height
of the potential barrier, independently of the Ualue of A,
y, and vn. Moreover, R(A, D) turned out to be propor-

tional to the reciprocal of the conventional bandwidth
Av, „~,. (ii) The occurence of SR has been verified for
values of v„as small as 2 Hz (whereas 2@~ is of the or-
der of 100 Hz or larger) contrary to what was observed
in the experiment of Ref. 4. (iii) The maximum value of
R(A, D) vs D, R,„(A), increases with A but is quite in-
sensitive to vn for v„&ply [while R(A, D) Aattens out
for vn )prr]. (iv) The SR mechanism persists for van-
ishingly small values of the frictional constants (under-
damped regime) but R,„(A) strongly depends on y. '
Most notably, features (ii)-(iv) of SR have been ob-
served also for asymmetric bistable potentials by adding
a constant voltage to the external modulating signal
A(r). '

The theoretical interpretation of SR elaborated in Ref.
2 applies to the discrete process T(n) but fails to repro-
duce the behavior of R(A, D). For low forcing frequen-
cies, v„& prr, the relaxation process (1) can be en-
visaged as the statistical superposition of two relaxation
processes in the asymmetric potentials (adiabatic ap-
proximation) V~ (x) =V(x) ~ Ax driven by the noise
f(t) Since the sm. all perturbation A(r) is assumed not
to alter the bistable nature of the potential V(x), V+- (x)
exhibit asymmetric minima in + x] and + x2, with
xi = —xm —A/2a. xz=xm —A/2a, and xm =(a/b) ' '.
Note that V+(x) =V—( —x) and V~(x~) ( V+(x2). In
the adiabatic approximation we can define two Kramers
rates, plr out of the deeper (metastable) well (plr & plr)
and px. out of the shallow one (prr )ply), respectively.
The forcing mechanism alternately tilts V(x) in the
configuration V+ and V — for half a forcing period so
that, if the SR condition (plr ) ' & v„' ((plr) ' is
fulfilled, the output signal switches between the two
stable voltages with frequency v„, giving x(r) no appre-
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ciable chance to leave the absolute minimum + x~ of
V~(x) during one semiperiod rr/A. The periodicity of
the switching signal is blurred by too fast a hopping dy-
namics, v& & p~, or a time-dependent perturbation
A(t), v„&px:. This model for SR explains the t)
dependence of N(T). The side peaks detected in Fig.
1(b) can be explained by noticing that in the experimen-
tal conditions which maximize the SR effect, p~ diAers
from p~— for less than a factor of 2 while v& =p~.
There is a finite probability that x(t) sojourns about the
metastable minimum ~ x~ of V+. (x) longer than half a
forcing period, so that no switch takes place before
V+-(x) is changed into V+. ( —x). This implies that
x(t) may fluctuate in one semiaxis during an odd rr/0
multiple time interval with exponentially vanishing prob-
ability.

The behavior of R(A, D) illustrated in Fig. 2 instead
suggests that the SR mechanism persists for any fre-
quency v& & pz. The adiabatic approximation can be
advocated here to discuss quantitatively the findings of
our simulations. In Fig. 3, we plot the normalized auto-
correlation function C(t) of the process (1) for some
values of A and D. For v& & p~ it is possible to distin-
guish between an exponential relaxation with decay rate
p~ +p~ and a periodic branch with frequency" v„.
This corresponds to a fast noise-driven relaxation of x(t)
towards a periodically modulated steady-state mean
value (x(t))T. A good estimate for the amplitude xT of
(x(t))T in the interesting range of D values, d, v/D ) 2,
can be obtained by considering a tilted configuration
V+- (x) of the potential V(x) and approximating the
relevant x(t) distribution function to two normalized 6
functions centered at ~ x~ and ~ x2, respectively; i.e.,

x, (A,D) =
Axm/D Axm/Dx ~e +x2e
Ax /D, —Ax /D

8(v) =2(x')px/(x'v'+ px2) . (4)

Such an assumption is certainly tenable in the limit of

Ax+ xppg Ega
2a D

In Eq. (2) we made use of the approximate expressions
V+(x, ) = V(x ) —Ax and V+(x, ) = V(x )+Ax,
only valid for Ax «AV =V(0) —V(x ). Approximate
expressions for x~ and x2 have been given above. As a
matter of fact, the amplitude cT of the periodic branches
of C(t) in Fig. 3 agrees with our estimate cT =(xT/x~)
within a few percent. Under the operating conditions of
our analyzer, the relevant SR spike is expressable as

~(vn) cTxm/~vexpt ~

For large-to-intermediate y values the background of
the x(t) power spectrum is closely reproduced by the
well-known power spectrum ' of the unperturbed pro-
cess (1) with A (t) =0,

L t. a-
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FIG. 3. The output-signal autocorrelation function for v&
=2 Hz and (1) AV/D =2, Ax =05AV; (2) AV/D =3,
Ax =0.226 V; (3) AV/D =2, Ax =0.22AV. The other pa-
rarneter values are as in Fig. 1. No appreciable statistical error
is expected.

low forcing frequency v&«pz and small perturbation
Ax~((t)V. In (4) 8(v) has been normalized to (x )
=x . For v&«p~ our estimate of R follows immedi-
ately":

R(A, D) =cT(A, D)tjx/2hv, „pt . (5)

R, Benzi, G. Parisi, A. Sutera, and A. Vulpiani, Tellus 34,
10 (1982); R. Benzi, A. Sutera, and A. Vulpiani, 3. Phys. A 14,

In the experimental situation of Fig. 2 with Ax =0.54V
(and y/cop =0.64) we obtained cT =0.50+ 0.01, 2px.
=280~ 5 Hz, and R,„=8.7 ~ 0.4. This value of R

is to be compared with our prediction in (5), R,„=7.0.
The disagreement between the experimental and theoret-
ical determinations of R,„ is expected to decrease with
increasing y. This trend has been verified over a wide
range of y/cup values, 0.06 ( y/cup (6. The dependence
of R,„(A) on the forcing amplitude is also well repro-
duced by Eqs. (5) and (2). On recalling that
ptr =exp( d, v/D), it is also —clear why for Ax~((D,
that R(A, D) peaks at about Av/D =2, as first shown in
Ref. 4.

In conclusion, we have characterized quantitatively
the notion of stochastic resonance for much wider a class
of stochastic systems than previously reported in the
literature by including dissipation (and asymmetry )
effects. The stochastic resonance mechanism, of poten-
tially frequent occurrence in nature, is explained in detail
by means of a simple adiabatic argument.
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' Peaks corresponding to odd harmonics of the forcing fre-
quency have been clearly resolved (at 3Q, 5B, and 7A) as well
as in N(T). An observed feature of the experiments in Ref. 4
was the presence of a peak at the second-harmonic frequency.
This appears to be in agreement with the actual bidimensional
ring-laser model advocated in Ref. 4.

''The long-time periodic behavior of C(t) can be determined
also by means of a matrix continued fraction expansion of the
Fokker-Planck equation associated with the process (1). P.
Jung and P. Hanggi, to be published. See also, R. F. Fox, to be
published, and B. McNamara and K. Wiesenfeld, to be pub-
lished.
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