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Anderson Transition in a One-Dimensional System with Three Incommensurate Frequencies

Giulio Casati @
Dipartimento di Fisica, Universita di Milano, Via Celoria 16, 20133 Milano, Italy

Italo Guarneri

(b)

Dipartimento di Fisica Nucleare e Teorica, Univerista di Pavia, Via Bassi 4, 27100 Pavia, Italy

D. L. Shepelyansky

Institute of Nuclear Physics, 630090 Novosibirsk, U.S.S.R.
(Received 31 May 1988; revised manuscript received 9 November 1988)

We report results of numerical investigations of the quantum dynamics of a 1D system subject to a
time-dependent perturbation with three incommensurate frequencies. These results demonstrate a tran-
sition from localized to extended states occurring at a critical value of the perturbation parameter. The
dependence of the localization length and of the diffusion rate on this parameter near the critical point is
analyzed and found to be in agreement with the predictions of renormalization-group theory.
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The investigation of quantum systems, which in the
classical limit become chaotic, has shown that, in the
case of 1D systems subject to perturbations periodic in
time, quantum effects lead to localization of diffusive ex-
citation.! This phenomenon is similar to the Anderson
localization for a particle in a 1D lattice with a disor-
dered potential?; it should be stressed, however, that in
our case no external random element is introduced since
the perturbation is periodic and that localization is relat-
ed here to quasienergy eigenfunctions and occurs in
momentum instead of configuration space.

Further investigations showed that the introduction of
a second, incommensurate perturbing frequency pro-
duces a sharp increase in the localization length, which
grows exponentially with the quasiclassical diffusion
rate.’ Again, this is close to the prediction of the theory
of weak localization in 2D disordered lattices.*® In the
same vein, a 2D time-dependent model has also been
studied in Ref. 7.

In this paper we investigate a time-dependent model
with three incommensurate frequencies. Since new, in-
commensurate frequencies in the time-dependent prob-
lem introduce new dimensions in the extended phase
space, such a model is expected to correspond to a 3D
lattice problem, where a transition from localized to ex-
tended states occurs at some critical parameter value.

We were indeed able to observe such a transition from
localized to delocalized behavior in our model. By
analyzing this transition, we obtained some indications
that may be helpful in clarifying the nature of the An-
derson transition itself, which is still in discussion in
solid-state physics.®? In this connection, we wish to em-
phasize that the 1D character of our time-dependent
model allows for a sharp reduction of the computation
time needed to analyze the transition, so that recourse to
scaling assumptions can be avoided.

Our model is a variant of the kicked rotator model. '3
We consider the motion of a particle on a circle, de-

scribed by the time-dependent Hamiltonian:
+ oo
H=H+V(,1) X 6t—s). (1
§=—o00
The second term describes kicks occurring periodically in
time with period one. The free evolution between kicks is
given by the Hamiltonian Hy:

Holn)=E,|n), |n)=e"®/(2r)"2, 2)

We assume the eigenvalues E, to be random numbers
uniformly distributed in (0,27z). Unlike for the usual
kicked rotator, we also assume V to explicitly depend on
time according to

V=v(6,6,+wt, 06,+wst), 3)

with V' a periodic function of its three arguments to be
specified later, and 0, and 0, are arbitrarily prescribed
phases. We would like @, and w; to be incommensurate
with each other and also with the frequency of the kicks.
Therefore, we take ;=27 ! and w,=2z\ "2, with
A~1.3247... the real root of the cubic equation
x3—x—1=0. With this choice, ; and w, are a “most
incommensurate” pair of numbers.'® Thus (1) describes
the motion of a rotator subjected to periodic kicks, the
strength of which is modulated in time by the frequen-
cies w; and w,.

The evolution of this rotator, from just after one kick
to just after the next, is given by (we take A =1)

w(0,1+1) =e ~V O+ g "oy (g 4y (4)

This formation of the rotator dynamics is very con-
venient for numerical simulations because the time
dependence of V is explicitly known. Nevertheless, in or-
der to elucidate the connection of this time-dependent
problem with a 3D tight-binding model, we must resort
to a different formulation as follows. First of all, we con-
sider the phases 6; and 6, as new dynamical variables,
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with conjugates momenta n, and n,. Then we consider

the Hamiltonian
+ oo

H'=Ho(R)+oh1+ i+ V(0,0,6) X 5t—s), (5)
s == oo

with A, ,=—i08/86,,. Equation (5) describes a quan-

tum rotator with three freedoms (8,6,,8,) subjected to

periodic kicks, the strength of which is not explicitly time

dependent. The one-period propagator for this rotator is

the unitary operator

~iV(6,6,,68,) —ilHy(A)+ oA+ w,yh,]
e 1,92 e o 171 212 .

In order to show that the 3D quantum model defined
by (5) and the 1D model defined by (1) and (3) are sub-
stantially equivalent, we rewrite the Schrodinger equa-
tion for the 3D model

id/dty(6,6,,6,,t) =H'y(6,6,,0,,t) ,
in the interaction representation defined by
y(6,01,00,0) =e ~ T 500 0, 0,1) (5a)

In this way we obtain

+ oo
idyldt =Hog+V (6,6, +wi1,0,+wat) Y, 0(t—s)y,
s=— oo
i.e., the Schrodinger equation for the evolution of the 1D
model.

We can now apply a transformation to the three rota-
tor (5), which was originally devised in Ref. 2 for the
standard, 1D kicked rotator and was subsequently gen-
eralized in Ref. 11. Because of this transformation the
problem of our determining the quasienergy eigenvalues
and eigenvectors for the three rotator turns out to be for-

-30}
-40}F

_50»

I 1 I

1

mally equivalent to solving the equation

Tnun+ZWrun+r=6una 6)

r#=0

where n=(n,n,n,) and r label sites in a 3D lattice,
Th= —tan[é— (E,,+n1a)1 +n2w2+k)] s

A is quasienergy, W, are coefficients of a threefold
Fourier expansion of tan[+ V(6,6,,6,)], and e= — W,,.
We now choose

V(6,6,,0,) = —2tan ~'[2k (cos6+cos8; +cosh,)], (6a)
so that (6) becomes

Tountkd'u,=0, (7

where the sum X' includes only the nearest neighbors to
n. The tight-binding model (7) with the potential T, is
in a sense equivalent to the original rotator problem.
The quasienergy eigenfunctions of the rotator will be lo-
calized or extended over the unperturbed eigenstates of
H,, depending on whether the tight-binding model has
localized or extended eigenstates; in the localized case,
the localization length will be the same. Since the dy-
namics of the rotator is determined by the nature of its
quasienergy eigenstates, any change from localized to ex-
tented states that may take place in the tight-binding
model (7), as the coupling parameter k is increased, will
be mirrored by a simultaneous change in the rotator dy-
namics, from a localized recurrent behavior to an unend-
ing spreading over the unperturbed base. As we men-
tioned above, the latter type of transition can be numeri-
cally detected with less effort than by our directly tack-
ling the tight-binding model.
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FIG. 1. Example of localized steady-state probability distribution f, over the unperturbed levels averaged over 5000 iterations
within the interval 95000 <7 < 100000. Here parameter kK =0.38.
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FIG. 2. Second moment {(n —no)?2) of the probability distri-
bution as a function of time 7 (in number of iterations) in the
delocalized regime. Here parameter k =0.6.

The disorder in the model (7) is given by the pseu-
dorandom character of the potential 7. We remark
that by replacing njw; and n,w> by random numbers,
one would get a 3D Lloyd model. In that case, however,
the time dependence of ¥ could not be made explicit as
in Eq. (4). One should then numerically simulate a 3D
rotator rather than a 1D one, with a consequent sharp
reduction of the allowable number of iterations.

The model was investigated by numerical simulation
of the quantum dynamics defined by (1) with phases
6, =06,=0. A basis of unperturbed eigenstates up to 512
was used. The initial state was chosen in the middle of
this base and its time evolution was numerically deter-
mined by iteration of the quantum map (4) giving the
one-period evolution, up to 107 iterations, for different
values of the perturbation parameter k. A transition be-
tween two different types of motion was observed around
a value k. ~0.47, with localization occurring for k < k¢,
and unbounded diffusion taking place for k > k. In the
localized regime, the time-averaged steady-state distri-
butions were found to decay exponentially with the level
number (Fig. 1), so that the corresponding average local-
ization lengths could be determined by our fitting the
probability distributions with the exponential law
exp(—2|n—nol|/l). In the delocalized regime, un-
bounded diffusive excitation occurs and the related
diffusion rates were determined by two ways; first, from
the time dependence of the second moment of the proba-
bility distributions (Fig. 2), and, second, by our fitting
the probability distributions with the Gaussian form
which would be predicted by the diffusion law (Fig. 3).

By this second fitting we also obtained the number of
levels which were effectively involved in the diffusion. In
all cases, these levels were found to be a fraction close to
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FIG. 3. Example of a Gaussian probability distribution f,
over the unperturbed levels for the same case of Fig. 2. The
probability distribution is here averagéd over 1000 iterations
within the interval 19000 < < 20000.

1 of the total number of levels, i.e., practically all states
were delocalized. This was further confirmed by the
closeness of the values of the diffusion coefficients ob-
tained according to the two above described methods.

In Fig. 4 we show the dependence of the diffusion rate
D =((n—no)®/t (in the delocalized regime) and of the
inverse localization length y=/"! (in the localized re-
gime) on the perturbation parameter k. In order to
suppress fluctuations, for each fixed value of k the values
of y and D were computed for ten different realizations
of the random spectrum of H, and average values were
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FIG. 4. Diffusion rate D (dots) and inverse of localization
length y=1/I (circles) as a function of perturbation parameter
k. Error bars were obtained from statistics over ten different
realizations of the random spectrum. The dotted lines result
from a three parameters least-squares fit (MINUIT) of numeri-
cal data.

347



VOLUME 62, NUMBER 4

PHYSICAL REVIEW LETTERS

23 JANUARY 1989

then found. The error bars give the standard deviations.
It is apparent that the transition took place near kg
~0.465. The dependences of D and y near k. are con-
sistent  with power laws, D~Dolk — ke )y
~y(k —k¢)". By a three parameters least-squares fit of
the dependence of D, we obtained Do~2.5, k. ~0.46,
and s~1.25 with a ;52=10. Errors ADg, Ak, and As
(corresponding to a change of x2 equal to 1) were, re-
spectively, 1, 0.0044, and 0.04. An analogous fit for the
dependence of y gave yo~3.5, k;~0.469, and v~1.5
with y2=24 and errors Ak =10 "3, Ayo=3%10 "2, and
Av~10"2

Thus the two fittings give very close values of k.. Re-
normalization theory predicts an exponent equal to one
for the behavior of the inverse of localization length close
to the transition point. The same exponent should de-
scribe, in the delocalized regime, the dependence of con-
ductivity on k —k..%% The same dependence should
therefore be expected for the diffusion coefficient.

The numerically obtained values are consistent with
these predictions. They are both close to 1, in agreement
with Ref. 12, according to which s=v=1+0(e*);
e=d —2, with d the lattice dimension. The only approx-
imate agreement of numerical values with theoretical
predictions is related to the fact that for values of k very
close to k., a number of iterations much larger than
[3~(k —k¢) ~3 is needed in order to distinguish local-
ized from diffusive behavior and to get very accurate
values for y and D.

An interesting remark is that the value of k. is not
the same as for the Lloyd’s model. In that case, a nu-
merical determination of k. by the method of Lya-
punov’s exponents yields a value =0.2.'3

On account of the above described results, we have
here an example of a 1D system subject to a time-
dependent perturbation with three incommensurate fre-
quencies,® in which a transition from localized to dif-
fusive behavior occurs. Together with previous results
for a model with two incommensurate frequencies, the
results above indicate a definite correspondence between
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the number of incommensurate frequencies and the lat-
tice dimension in solid-state problems. This introduces a
possibility of relatively easy numerical investigations of
localization and Anderson transition in higher dimension
also.
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