Defect Creation and Two-Photon Absorption in Amorphous SiO₂

In a recent Letter, ¹ Tsai, Griscom, and Friebele have reported results on E'_1 (oxygen vacancy) defect creation in bulk, amorphous SiO₂ using 6.4-eV pulsed laser radiation. Their results give clear evidence for the role of two-photon absorption and suggest that excitonic mechanisms are involved in new defect creation rather than precursor transformation.

We have previously reported² dose-dependent E'_1 defect creation studies in low OH Suprasil Wl using 4.8-eV photons from a pulsed excimer laser. Assuming twophoton processes relevant and a two-photon absorption coefficient, ³ β at 4.8 eV of 4.5×10⁻⁵ cm/MW, we show in Fig. 1 the E'_1 defect creation as a function of the density of two-photon excitations. The value for β was measured³ at 4.5 eV, but is expected to vary slowly with photon energy in this range.⁵ For the 6.4-eV data,¹ we assume that the E'_1 creation efficiency is independent of wavelength and, from the 4.8-eV data, that 5×10^{14} E_1'/cm^3 are created by 1.8×10^{18} two-photon excitations per cm³. The 6.4-eV data from Ref. 1 is plotted in Fig. 1. To compare the laser results with defects created by γ rays, we first estimate the number of oxygen displacements produced by Compton electrons ($E_{\rm th} \sim 150$ keV). For 10 Mrad of 60 Co γ rays, if each γ produced a Compton electron of 1 MeV, then the number of displaced oxygens per cm³ would be⁶ $3 \times 10^{15} < n_0 < 6 \times 10^{15}$. Comparison of the number of displaced oxygens per implanted ion with the E'_1 creation per implanted ion in ionimplantation experiments⁷ indicates that for every 37 displacements only one "permanent" E'_1 is created. For 10 Mrad of γ rays, the maximum number of E'_1 defects is then $8 \times 10^{13} < n_{E'} < 1.6 \times 10^{14}$ per cm³, which is much less than we have observed. In Fig. 1 we thus plot the E'_1 density we have observed as a function of density of electron-hole pairs, assuming a creation rate of (8×10^{12}) pairs)/cm³/rad.⁸ We deduce a power-law fit to both the laser and γ -ray data of the form $n_{E'} = 1.4 \times 10^4 n_p^{0.57}$ where n_p is either the density of electron-hole pairs or of two-photon excitations. For high OH silica, our γ -ray data and the 6.4-eV laser data¹ coincide but with a different power law for n_p (we have no 4.8-eV laser data).

We can approximately estimate the two-photon absorption coefficient at 6.4 eV noting that for the same number of incident pulses at 4.8 and 6.4 eV, incident intensities of 15 MW/cm² (Ref. 3) and 6 MW/cm² (Ref. 1) are required, respectively, to produce the same density of defects. We assume that the fraction of energy lost in two-photon processes is $E_2 = (1 - e^{-2\alpha z})I_0\beta/\alpha$, where α is the one-photon coefficient in cm⁻¹, z is the sample thickness in cm, and I_0 is the incident intensity; then with⁴ $\alpha(4.8) = 0.002$ and $\alpha(6.4) = 0.017$, we deduce $\beta(6.4)/\beta(4.8) = 2.5$ in excellent agreement with theoreti-

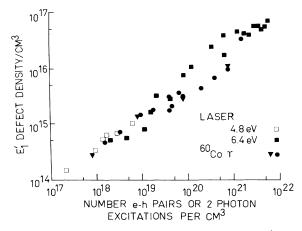


FIG. 1. E'_1 defect creation in low OH silica by 4.8- (Ref. 3) and by 6.4-eV (Ref. 1) laser radiation and 60 Co γ rays as a function of density of electron-hole pairs or two-photon excitations. γ data from Ref. 4 (∇) and from the present authors (\bullet). All irradiations were carried out at room temperature.

cal predictions⁵ of ~ 3 .

The results presented indicate a unique power law for E_1' creation whether by ionizing radiation or two-photon absorption, suggesting the same mechanism of defect creation independent of the radiation responsible for cross-band-gap excitation. Such defect studies may enable a crude estimate of two-photon absorption coefficients for short-wavelength laser radiation.

R. A. B. Devine

Centre National d'Etudes des Telecommunications BP 98, 38243 Meylan, France

Received 18 August 1988

PACS numbers: 61.70.At, 61.80.Ba, 76.30.Mi

 1 T. E. Tsai, D. L. Griscom, and E. J. Friebele, Phys. Rev. Lett. 61, 444 (1988).

 2 R. A. B. Devine, C. Fiori, and J. Robertson, Mater. Res. Soc. Symp. Proc. **61**, 177 (1986).

³P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, Phys. Rev. B 17, 4620 (1978).

⁴E. Dooryhee, Ph.D. thesis, University of Paris, 1987 (unpublished).

 5 H. S. Brandi and C. B. de Arauja, J. Phys. C 16, 5929 (1983).

⁶O. S. Oen and D. K. Holmes, J. Appl. Phys. **30**, 1289 (1959).

⁷R. A. B. Devine, in *The Physics and Chemistry of SiO*₂ and *the Si-SiO*₂ *Interface*, edited by B. E. Deal (Plenum, New York, to be published).

⁸J. R. Srour, S. Othmer, O. L. Curtis, Jr., and K. Y. Chiu, IEEE Trans. Nucl. Sci. 23, 1513 (1976).