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Correlated Lattice Fermions in d = eo Dimensions
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We show that even in d =~ dimensions the Hubbard model, when scaled properly, describes nontrivi-
al correlations among fermions. Diagrammatic treatments are found to be substantially simpler than in
Anite dimensions. The weak-coupling correlation energy is seen to be a good approximation for that in
d=3. Recent approximations based on slave-boson techniques are recovered by the exact evaluation of
explicit variational wave functions in d =~.

PACS numbers: 75.10.Jm, 71.10.+x, 71.28.+d

The spin- 2, single-band Hubbard model' for interact-
ing fermions on a lattice plays a particularly important
role in condensed-matter physics. In spite of its apparent
simplicity, exact solutions have so far only been possible
in d=1 space dimension. However, in view of the spe-
cial properties of one-dimensional systems it is not clear
how relevant these results are for higher-dimensional
systems, e.g. , for d=3. There is another limiting dimen-
sion, d =~, where exact solutions have been obtained for
various, mostly classical, spin systems. In this case
there exist close relations to mean-field-type solutions.
In the case of the Hubbard model, an exact solution in
d =~ is not available so far.

In this Letter properties of the Hubbard model in
d=~ will be discussed. The Hubbard Hamiltonian' has
the form

J% Jh

H =Hk;„+ Ugnttntf, (la)

ir VV "+ + V~ kin ~~ Eijc&'~ cj =~Ek&kcr ~

a i,j k, tT

(lb)

where Hk;„ is the kinetic-energy operator expressed in
position space and momentum space, respectively. For
next-neighbor hopping on a d-dimensional simple cubic

lattice with unit lattice spacing, we have
d

eg = —2t g coskl,j=l
where t is the hopping amplitude and k = (k ~, . . . , kd ).

For d~ ~, the on-site interaction is still well defined
but the hopping rate in the kinetic energy has to be
scaled properly to yield a nontrivial model. This is most
easily seen from the corresponding density of states
(DOS) for U=0, which in d =~ is determined by the
central-limit theorem as

(2)

(3)D(E) =,t exp[ —(E/2tWd) '] .d--2t ~d '"
Clearly, only the scaling t = t */(2d ) 't with fixed t *
(henceforth t*=l) yields a finite DOS and thereby
leads to a finite average kinetic energy eo(nt, n~) of the
noninteracting particles for arbitrary densities n t, n ~.

Any other scaling makes eo(nt, n ~) either zero or infinite
so that the model becomes immediately trivial.

We have recently shown that for weak coupling the
correlation energy of the Hubbard model in d=1,2, 3
can be calculated within ordinary Goldstone perturba-
tion theory. In particular, in the limit d ~, the eval-
uation of the corresponding diagrams is greatly
simplified. This may be demonstrated in the case of the
second-order contribution given by

(4)

f+ OO

E2/LU = —
~ dk+Ft+ (X;f)F)+ (X;f)Ft (X;f)F) (X;f) .

f
Here F+ (X;f), F (X;f) are the Fourier transforms of nq exp(Xek) and (1 —nk )exp( —Xek), respectively. If we make
use of the fact that gq[F (A,;f)] is finite and cou—nt the number of nearest neighbors, next-nearest neighbors, etc. , of
the site f =0, it follows that F (X; feO) vanishes —at least as I/Jd for d ~. Consequently, the off-site (fa0) con-
tributions in (5) vanish as 1/d, such that only the f =0 term remains. Using the DOS (3) we thus find

E /LU = —
~ dke +P(EF —X)P( EF —X) . — (6)

(5)

nktn~ ~(1 —nk+qt)(I —
nj, &~)E2 =

3d
dkdk'dq

(2tt) '" «+ ~k «+q
where the integrations extend over a Brillouin zone; here nk =1 for

~ k~ & kF and zero elsewhere, and L is the number
of lattice sites. If we write the energy denominator in (4) as an integral over an exponential factor, and express momen-
tum conservation in (4) explicitly by an integral over a 6 function, which is then converted into a lattice sum via
8(k) =(2tt) dgtexp(ik. f), (4) is written as
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Here P(x) is the Gaussian probability function. Hence
the evaluation of E2 for d ~ is seen to reduce to a
single integral over probability functions and is therefore
the simplest of all dimensions. The simplification is due
to the fact that in d =~, and for an arbitrary choice of
the momenta k, k', and q in (4), the energies eh, eh, ,

fh+q, and e& q are randomized by umklapp processes
generated when the lattice momenta are added. Hence
the energies become mutually independent, which allows
one to replace the momentum integrations in (4) by en-

ergy integrations over the DOS (3). The energy E2,
plotted as a function of density n (n I =n l =n/2), is
shown in Fig. 1 in comparison with the respective numer-
ical evaluation for d=1 and 3. The result for d =~ is
seen to be very close to that for d =3 and can therefore
be considered as an easily tractable, reliable approxima-
tion. The existence of a nonzero second-order contribu-
tion to the exact ground-state energy also shows that the
antiferromagnetic Hartree-Fock approximation is not
the exact result even in d =~, since the asymptotic ex-
pansion of the latter terminates after the linear term in
U.

We note that F+ (0;f—h) is just the one-particle den-
sity matrix of the noninteracting system

PPx, fh =(@0I ~ fWhcr I +o&,

ational parameter, 0(g ( 1, and D =g; D; =g;n; ln; 1 is

the number operator for doubly occupied sites. General-
izations of

I @o) to BCS-type wave functions, leading to
a resonating-valence-bond-type state in the limit g=0,
are only slightly more complicated. The case where

I @o) is a simple Fermi sea has already been discussed
earlier, where it was shown that an analytic evaluation
of ground-state properties of the Hubbard model is pos-
sible in d=1. This earlier analysis may be simplified and
further generalized by employment of well known
many-body techniques. To this end we recall that the di-
agrams which determine the one-particle density matrix
P rh =(cr~h ) are identical in form to the ones for the
two-point functions of a + theory with lines correspond-
ing to P fh. In analogy to the diagrammatic representa-
tion of Green's functions, one may therefore define a
"self-energy" S fh, which is built up by the same dia-
grams as the self-energy for Green's functions, and a
"proper" self-energy S*fh being the sum over all one-
particle irreducible diagrams. S and So are related by
the usual Dyson equation. The one-particle density ma-
trix then takes the form

P~ (h =P~ rh+ 1rh P~S~-I+g 1+

where I C&o) is the noninteracting ground state. Hence
P rh vanishes at least as I/Jd for d~ ~, if fah. The
result remains true even if I No) is chosen to be a more
general one-particle wave function, e.g. , a Hartree-Fock
spin-density wave. This property allows for an exact
evaluation of expectation values (0) =(+ I0 I

+)/(+
I
+)

in terms of variational wave functions of the form

(7)

which are generalizations of the Gutzwiller wave func-
tion. Here I @o) is an arbitrary, not necessarily transla-
tionally invariant, one-particle wave function, g is a vari-
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FIG. 1. Second-order correlation energy e2=E2/[LU /

I eo(&, & ) I l vs density for lattice dimensions d= I, 3, and ~.
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Here P, P, and S are taken as matrices, with 1 as the
unit matrix, with elements P fh, etc. The expectation
value for the interaction term of the Hubbard Hamil-
tonian can be expressed in terms of S as

d=L '(D) =L '[g /(1 —g )]Tr(P 5 ),

where Tr( ) =Jr() ff. To investigate the consequences
of the fact that P rh, f&h, vanishes at least as 1/Jd for
d ~, we consider a diagram in which two vertices f, h

are connected by three or more separate paths. The
evaluation of the diagram involves the lattice sum over

f, h and all other vertices. However, the contributions
from fWh, are suppressed by factors of order I/ Jd.
Consequently, in the limit d ~, only the on-site terms
(f =h) remain, i.e., the two vertices collapse into a single
vertex. Consequently, since external vertices of proper
diagrams are always connected by three separate paths,
S*fh is seen to be diagonal, i.e., S*fh =6fhS~f.

As a first application, we treat the simple Gutzwiller
wave function with I &o) in (7) given by the Fermi sea.
Because of translational invariance S f is independent of
f: S*r =S* for all f. The evaluation of (nh ), the
Fourier transform of P rh in (8), and of (D) in (9) is
thus reduced to the calculation of a single numbe~ S*.
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With L 'Pqnq =n the latter is determined by a quad-
ratic equation, yielding

S* = [A —[A —4(1 —g )(1 —n )n ]' j/2(1 n—),
(10)

with A =1 —(1 g—)(n n —). By Dyson's equation,
the self-energy S (k) is then given by S =S /(1 —S*)
for k (kF and by S =S for k & kF . The momentum
distribution (nq ) is therefore a step function with a
discontinuity

q =1 —[S*/(1+g) l[1 —g /(1 —S*)]
and

(D)=L[g n /(1 —g )]S /(1 —S*).
These are precisely the results of the Gutzwiller approxi
mation (for a detailed discussion, see Ref. 10), which is

therefore seen to become the exact result for the expecta-
tion value of 0 in terms of the Gutzwiller wave function
in the limit d =~.

To determine S*f for general starting wave functions

I @p& we introduce skeleton diagrams by defining dressed
lines P =P +P S P . The first three diagrams ap-
pearing in a skeleton expansion of S* are shown in Fig.
2. Solid (broken) loops correspond to factors P 1 ff
(Puff). Because of their simple structure, the collapsed
skeleton diagrams can be summed up exactly, yielding

S~t = —[1 —[1+4(1 g)P~ ttP —-~ tt] ' ]/2P~ ff, (11)

which, together with the definition of P and the Dyson
equation, determines S*f and S fh for given P fh and g.
We note that the series of diagrams in Fig. 2 contains all
diagrams, i.e., does not represent a particular subclass.

The above formalism enables one to evaluate the Hub-
bard Hamiltonian in terms of increasingly refined wave

functions. For example, I@p) in (7) may allow for anti-
ferromagnetic long-range order

I~AF&=g II TI [cosO,a~++osinO, ak, q, ]10& (»)
[~1 &kF

E(m, d)/L =qeHF(m)+Ud, (14a)

where eHF(m) is the antiferromagnetic Hartree-Fock re-
sult for the kinetic energy and

Here Q is half a reciprocal-lattice vector, for which the
perfect nesting property ei,+q= —ei, is supposed to be
valid (AB lattice). For detailed numerical investigations
of I +AF) in d=1,2, see Ref. 11. In the case of I +AF),
P fh is no longer translationally invariant, although
translations among points of the 3- and the 8-type sub-
lattice, respectively, are still allowed. This particular sit-
uation may be treated conveniently by the introduction
of a matrix representation distinguishing between
translations from A to A, A to 8, 8 to A, and 8 to 8.

The ground-state energy Efg;Ok] =(H) is then ob-
tained as a functional of g and Ok. The minimization
with respect to the function Ok can be performed exactly
yielding

[p/(p. ' —1)]e'+ &(e'+ &') '"
I sin2Ox

I

=
[ 2/( 2 1)]e2+P2

where p is a parameter related to g and A parametrizes
the sublattice magnetization

m = 1(n t n l& I
=2AL ' (ek+6 )

&kF

We note that Oq in (13) is, in general, different from the
Hartree-Fock form, which has been used in numerical
calculations, " and which is seen to be a special case
(g = 1, i.e., p = —~). If we use (13) and express
E[g;Oj in terms of m and d (9), E may be cast into the
form

(14b)

FIG. 2. Skeleton diagrams for the first three orders of the
proper self-energy.

4(n —2d ) [d(d+ 1 —n) ] ' ~+ 2(2d+ 1 n) [(n —2d) —m —] '
q=

{(n —m )[(2 n) ——m ]]'
is a renormalization factor. The minimization of E with respect to m, d has to be performed numerically. The result
(14) is seen to be identical to that by Kotliar and Ruckenstein, ' who obtained their results by a slave-boson technique.
Here we have constructed the explicit wave function I +AF), for which this result is exact in the limit d =~.

For n=1, the minimization shows that for all U&0
one has m &0 and q & 1, i.e., there is a transition at
U=O to an antiferromagnetic insulator as is expected

/y from the perfect nesting property. This is in contrast to
( j earlier attempts to generalize the Gutzwiller approxima-

tion to the antiferromagnetic case. ' The energy is al-
ways lower than that obtained by use of the Gutzwiller
wave function or the Hartree-Fock results. For U

I +AF) approaches the Neel state which is, in fact, the
fTI= ] m=3 exact ground state of the half-filled Hubbard model in

d=~ for large U. ' [However, for smaller U neither
I +AF) (12) nor the Gutzwiller wave function is the exact

ground state in d=~, e.g., they yield only 85% of the
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exact second-order correlation energy E2 (6).] For less
than half-filling there exists a critical density n, =0.85
below which m=0 for all U, while for n, & n & 1 there
exists a bounded regime in U with m &0. One finds

q & 1 for all n and U & 0.
In summary, we have investigated the Hubbard model

in the limit d =ee using perturbation theory and varia-
tional wave functions. Applying well known many-body
techniques to the case d=ee, we have shown that (i) in
d =~ the diagrammatic calculation of ground-state
properties is greatly simplified; (ii) at least in the weak-
coupling limit, the correlation energy in d =3 is very
close to that in d =~; (iii) the mean-field antiferromag-
netic Hartree-Fock solution does not yield the exact re-
sults in d=ee; (iv) calculations with variational wave
functions of increasing refinement are analytically tract-
able. In this way the results of several well known ap-
proximations ' used in finite-dimensional systems are
recovered. The methods developed here for d=~ may
equally be used to study correlation functions and other
Hamiltonians such as the periodic Anderson model. ' In
particular, our results should also be valuable for the in-
vestigation of these models within a general Green's-
function approach. Indeed, preliminary results for the
Hubbard model in d = ee, obtained by application of the
above methods and ideas to the one-particle propagator,
are very promising. '
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