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Theoretical Study of a Superconducting-Glass Model
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The nature of the metastable magnetic properties of a random Josephson-junction array in the pres-
ence of a constant transverse magnetic field is studied extensively by Monte Carlo simulations. The
quenched magnetization and helicity modulus are calculated as a function of temperature, field, amounts
of disorder, dimensionality, and time. The calculated quantities are found to be strongly thermal-history
dependent, similar to the magnetic properties found in high-temperature oxide superconductors. We
also suggest to test the results of this paper in artificially made arrays of random Josephson junctions.

PACS numbers: 74.50.+r, 64.60.Cn, 74.70.Vy

Among the many interesting properties found in the
high-temperature oxide superconductor s are their
history-dependent magnetic properties. These were first
found by Miiller, Takashige, and Bednorz (MTB) in the
ceramic superconductor La2Cu04. Ba, ' and have been
carefully studied in several of the known high-T, ceram-
ic superconductors by several groups. ' An understand-
ing of the sources and properties of the metastability
found in these materials would be very useful both from
the basic as well as the applied physics point of view.
There have been essentially two proposals to interpret
the metastable properties of these systems: the super-
conducting glass m-odel and the aux creep -model. It
was suggested in the MTB paper that the source of the
metastability may be similar to that found in spin-glass
models. Their conjecture was motivated in part by the
behavior of the zero fteld cooled-(ZF-C) and the field
coo/ed (FC) magnetizations which show striking qualita-
tive similarities with those seen experimentally in the
canonical spin-glasses like Cu:Mn, including the loga-
rithmic time dependence of the decay of the FC magne-
tization when the field is switched oA; and a de
Almeida- Thouless (AT) line. The alternative jiux-
creep interpretation is better known in the literature of
conventional type-II superconductors. It was developed
by Anderson and was tested in several low-temperature
superconductors. Recently, Yeshurun and MalozemoA'
have found an AT-like nonergodicity line in single crys-
tals of the 1:2:3 YBaCuO compound and gave qualita-
tive flux-creep arguments that explain their experimental
data.

Our main goals in this paper are to improve our basic
theoretical understanding of the glass model as well as to
point out how to test and compare the theoretica1 predic-
tions of the superconducting-glass model in well con-
trolled experimental systems, e.g., Josephson-junction ar-
rays that can be fabricated explicitly by use of modern
photolithographic techniques. The model proposed by
MTB to explain their data consists of a random array of
Josephson junctions (RAJJ) in a transverse magnetic
field. There is extensive evidence that the oxide super-
conductors behave like arrays of Josephson junctions in
the low-field regime, and there have been several sugges-

tions as to where the junctions are, from being in-
tragranular to intergranular. Recent experiments by
Chaudhari et aI. seem to indicate that the Josephson
connections are mostly formed between the metallurgical
grains. The model studied in this paper is defined by
the Hamiltonian,

P =QEq(i, j)[I—cos(P; —tttj+2ttf j)],
EJ

with fJ =(I/@0)fJA . dl. Here p; is the phase of the
Ginzburg-Landau order parameter of the ith supercon-
ducting grain. EJ(i,j) denotes the Josephson coupling
between superconducting regions and the frustration pa-
rameter f=gpf~ =@/@0, with gt denoting a sum over
plaquettes, + the magnetic flux through a loop formed
by a set of junctions, and @0 the flux quantum. In spite
of the simple appearance of this Hamiltonian, its general
properties are, to a large extent, unknown. Su%ce it to
say that even in. the periodic array case the model has
been studied extensively and only a few selected equilib-
rium properties of the model are known. Since the
grains are located at random, the f~ are themselves ra.n-
dom variables. We could also consider EJ(i,j ) as a ran-
dom variable, but this is in some sense included in the
randomness of the f~; thus EJ is taken as a constant. '

More important are the temperature and magnetic field
dependencies of EJ, which, because of the size of the
grains can have a significant eAect on the results. It is
here where a microscopic theory is needed to derive the
explicit magnetic field and temperature dependencies of
the Josephson coupling. The lattice model given in Eq.
(1), with the fJ. random, was first studied within the
context of granular BCS superconductors by Ebner and
Stroud, " and a continuous version of the model with
random dilution by John and Lubensky. ' The first ex-
plicit study of Eq. (1) aimed at understanding the MTB
results has been carried out by Morgenstern, Muller, and
Bednorz. ' They considered a positional disordered
model where each site is randomly chosen to be at a
maximum radius r from its regular periodic positions.
They concentrated their study on the equilibrium prop-
erties of the model, and, specifically, on deriving the H
dependence of T, (H), which appears to agree with the
AT-line form. Here we center our attention on the non-
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equilibrium, hysteretic, properties of the RAJJ model, Thus, here we present results only for the uniform proba-
with Monte Carlo dynamics, for comparison with the ex- bility distribution. The simulations were carried out in
perimental results for the ZFC and FC magnetic proper- two-dimensional and quasi-three-dimensional lattices of
ties of the system. fixed size with magnitudes LzxLy and LxxLy xLz re-

There is a significant amount of experimental evidence spectively. In the quasi-three-dimensional calculations,
that shows that the physical properties of the oxide su- each x column is chosen random and independent from
perconductors are highly anisotropic, with the conduc- the others. The model emphasizes the trapping of par-
tion mechanism taking place mainly along the Cu02 ticular amounts of Aux along the y axis; thus it has
planes. Thus, we begin by considering a two-dimen- correlated disorder along the y axis. This RAJJ model is
sional model and later on discuss the eA'ects of adding in- of interest for several reasons: First, it can be easily
teractions between the layers. The RAJJ model con- made in two dimensions with any of the modern photol-
sidered here consists of arrays of junctions equidistant ithographic techniques employed to fabricate arrays. ' '
along the y axis but with random separations along the x Second, in the strong-field limit, a similar model has
axis. The lattice sites along the x axis are located at been shown analytically to correspond to a Sherrington-
points x; =ia+Ba, with i an integer and a the fundamen- Kirkpatrick long-range mean-field-theory model, ' while
tal spacing in the periodic lattice, that we shall set equal for weak fields it leads to an AT line. ' Here we are in-
to 1; 8 is an independent random variable defined in the terested in the weak-field intermediate regime (the ana-
interval [a —S,a+8] and determined by a probability log of the Abrikosov regime H, &

(H (H, 2 for
distribution P(6). We find that even when we consider Josephson-junction arrays. '

randomness in the y axis as well as the x axis, the results Given the Hamiltonian and the P(6), we calculate the
are qualitatively analogous. Similarly, calculations for experimentally measurable magnetization M(T, 6,H)
uniform and Gaussian probability distributions do not and the helicity modulus Y(T,B,H), following the stan-
lead to significant qualitative diA'erences in the results. dard Metropolis algorithm. If we choose the Landau

gauge, the magnetization is given as

)xl(T) = ——g ( Ex /4o)xsin ((X —(+2tlfiz )x( + x))xl1

E,J C

where x; denotes the ith lattice point in the x direction, N is the total number of lattice points, and (), stands for
configurational average. Y represents the increase in the free energy of the system when there is a uniform twist of the
phases at one end of the sample, and is directly related to the superAuid density. ' The corresponding expression for Y
along the x axis is

2gx;. cos((t); —
y +2ttf J) —p +xi) sin(p;+pj. +2ttf;J. ) +p Xxi»n((t)( At+2&flJ)

N C V C EJ

with x;J =x; —xj. An equivalent expression is obtained
when the twist is along the y axis.

In doing our calculations we follow essentially the
same procedures as in the experiments. ' We start by
generating a random lattice from the P(8) distribution.
At low temperatures, the system is equilibrated in the-

absence of an external magnetic field. A field is then
turned on and the system is warmed up slowly, allowing
it to reach local equilibrium at each temperature. This
gives us the ZFC properties of the system. In the period-
ic case, without a field, the model has a Berezinshkii-
Kosterlitz-Thouless critical temperature TqKT-0. 9; thus
the system is warmed up past this temperature, always
with the constant field on. Typically, at about T-1.5,
the process is reversed and the system is slowly cooled
down to its initial low-temperature value. Once again
the system is slowly warmed up to the high-temperature
region: this process defines the FC magnetic properties
of the system. This procedure is repeated for each
member of the configurational ensemble. We found that
the configuration average ~as necessary to get statisti-
cally reliable results, although the number of members in
the ensemble did not need to be large (typically for

5 (n ( 10 the results were statistically stable).
Nonetheless, the calculat'ions were computationally in-
tensive.

Typical results for the ZFC and FC runs for M and Y
are shown in Fig. 1. Note that the results for M are
strikingly similar to the experimental results found by
MTB and other authors. After the first warming up,
we repeated the cooling and warming procedure several
times, essentially retracing the same FC curve, indicat-
ing that the FC branch corresponds to the equilibrium
value for the magnetization. In the inset we show the
temperature dependence of the amount of metastability
by the diA'erence hM(T, H, 8) =MFA —MzFc. We no-
tice that close to T, (H), hM decays to zero approxi-
mately linearly with 1 —T/T, (H). In Fig. 1(b) we show
the helicity modulus for the same parameter values as in
Fig. 1. Again we see that there is a clear hysteretic be-
havior as a function of temperature with a transition
temperature T, (H) about the same as in the M(T) re-
sults. The temperature dependence of AY =YFc —YzFg
can be read oA from the plot, while in the inset we show
the magnetic field dependence of the width AY. Note
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FIG. 1. Zero-field-cooled (cj) and field-cooled (&&) runs for
(a) M and (b) Y, in a lattice of 16 X 16 sites, with H=0.01 and
6=0.1. The results for each configuration corresponds to runs
of 6 && 10 MCS/angle discarding 10 MCS/angle for equilibra-
tion. N denotes the total number of angles, with ten members
for the configurational quenched averages. M and T are nor-
malized by EJ, and M and H also by @0/iS1, with (S) the aver-

age area of a plaquette. The size of the error bars are about
the size of the symbols. The insets are discussed in the text.

that the superfluid density is finite above T, (H), indicat-
ing that the zero-resistance temperature is higher than
the onset of nonergodic behavior, as seen in the experi-
ments. For fixed 0 and temperature, the magnetization
is essentially constant as function of 8' (for 0.1 ~ 6
~0.25), whereas the critical temperature T, (b) de-
creases monotonically with B. In Fig. 1(a) it would ap-
pear that there is a smaller jump about T=0.5. We did
calculations for a large number of members in the en-
semble (n =10) and the apparent discontinuity became
smooth, proving that doing configurational averages can
be important. We also analyzed the size dependence of
the results, for n =5, taking Lx x L~ =8 x 8 16x 16, and
20&&20, with the same number of Monte Carlo steps per
angle (MCS/angle). As expected, since for smaller sys-
tems the nonergodic line decays to the equilibrium line in
a shorter time, we found that the results were qualita-
tively analogous in smaller lattices but with hM smaller,
given that the system needs an equilibration time which
is of exponential order in N.

In Fig. 2 we present typical results for M and Y for
quasi-three-dimensional model calculations. Note that
h,M is larger while 5,Y is about the same magnitude as in
their corresponding two-dimensional cases. In the inset
of Fig. 2(a) we show results for T, (H) as a function of
the interplane interaction strength e =EJ(& )/EJ(ll).
We find that the critical temperature T, (H) increases
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FIG. 2. M and Y as in Fig. 1, with the same H and 8 but
lattice size 16x 16x 5 for one configuration and the same num-
ber of MCS/angle as in Fig. 1. The insets are discussed in the
text.
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FIG. 3. Decay of remanent magnetization M for a lattice of
size 16X16, and with 0=0.02, 6=0.2. The critical tempera-
ture T, (H) —0.25.

monotonically as a function of e, and then saturates
after a value of e—1, and a fixed number of planes. The
increase in the critical temperature was seen in the cal-
culations of Ref. 13 for the value of t. =1, but not for the
systematics shown in the inset of Fig. 2(a). This trend is
analogous to that seen in the increase of T, for the oxide
superconductors under pressure. In the inset of Fig.
2(b), the logarithm of the critical temperature is plotted

as a function of 1/JL, . For values of L, ~ 5 the curve is
essentially linear while for L, ~ 5 it flattens out. The

1/JL, behavior is analogous to the one proposed to fit
the experimental change of T, (H=O) as a function of
the number of Cu02 layers. ' Thus, it appears that
there is an upper bound in T, (H) as a function of the



VOLUME 62, NUMBER 3 PHYSICAL REVIEW LETTERS 16 JANUARY 1989

number of layers, and the magnitude of the interlayer in-
teraction.

As in the MTB experiments, to further check the dy-
namics of the trapped flux in the model, we take an equi-
librium point in the FC branch and then turn the field
off. The Monte Carlo time decay of M is shown in Fig.
3. Note that in Fig. 3 the magnetization has a slow de-
cay, as in the experiments, as a function of in/. Initially
it is almost linear in lnt and then it becomes essentially
constant for the runs shown here. At low temperatures
(—0.1) the constant value persisted even for runs up to
10 MCS/angle, while for higher temperatures for times
larger than 10 /angle, the magnetization decays to a
lower value of M. For clarity in the figure we only show
three values of T; two below T, (H) (0.1 and 0.2) and
one above T, (H) (-0.25). The point here is just to
stress that the decay in this model is nonexponential in
contrast to the exponential decay found in the model
studied in Ref. 13.

The results contained in the figures clearly indicate
that there are energy barriers between different metasta-
ble flux states that have to be jumped before the system
reaches thermodynamic equilibrium. These thermally
activated flux transitions are analogous to those in the
flux-creep model. Thence the two models are, in a sense,
qualitatively similar and their predictions can be con-
sidered as complementary to each other. In fact, loga-
rithmic or nonexponential time decays are found in many
systems that show metastability. The pervasiveness of
this type of behavior can be traced to some very general
properties of the thermal activated decay of metastable
states. Furthermore, the model given in Eq. (1) can be
transformed to a vortex representation, with standard
duality transformation techniques, ' and the discussion
about vortex penetration or exclusion can, in principle,
be made as in the flux-creep treatment. Theoretically,
however, the study of the dynamics of the problem in

terms of its vortex representation appears much harder
to do.

The conclusion we arrive at from the results presented
above is that the RAJJ model leads to a number of re-
sults that are in striking similarity with those seen exper-
imentally. Furthermore, we suggest testing the predic-
tions of our studies by precise measurements of Y using
techniques similar to or those employed by Martinoli and
his group. ' Apart from the fact that such studies
would be of interest in themselves, they may serve as a
bridge in the understanding of the underlying physics of
metastability in the oxide superconductors. A prelimi-
nary report of related results can be found in Ref. 24
while a detailed discussion of these and other results will

appear elsewhere.
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