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Density of States in a Vortex Core and the Zero-Bias Tunneling Peak
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Scanning-tunneling-microscope measurements by Hess et al. of the tunneling conductance into a su-
perconducting vortex core show a pronounced peak at small bias. We show that this peak is due to the
quasiparticle bound states in the core. A numerical (and approximately self-consistent) solution of the
Bogoliubov-de Gennes equations yields the local density of states in the core, which resembles the tun-
neling conductance once we account for thermal broadening eAects. We find additional structure in the
local density of states which should be observable at lower temperatures.

PACS numbers: 74.50.+r, 61.16.Di

Recently, Hess et al. ' have used a scanning-tunneling
microscope (STM) to study the properties of excitations
in the vortex cores of the type-II superconductor NbSe2.
By measuring the differential conductance dI/dV as a
function of the bias voltage V, they were able to map out
the local density of states in the vicinity of a single vor-
tex. Far from the center of a vortex they reproduce the
standard BCS form for the bulk density of states in the
absence of an applied field. However, when the STM tip
is scanned over the center of a vortex a rather pro-
nounced peak in dI/dV is observed at small bias. In this
Letter we present an explanation of this anomaly based
on an approximately self-consistent numerical solution of
the Bogoliubov-de Gennes equations for the quasiparti-
cle bound states in the presence of a single vortex, for pa-
rameters relevant to NbSe2. From this numerical solu-
tion we obtain the quasiparticle amplitudes u(r) and
v(r) explicitly, unlike previous approaches which have
relied on various analytical approximations. In con-
trast to previous work, we find that the local density of
states at the vortex core exhibits a remarkable amount of
structure, which may be resolved by repeating the exper-
iment at su%ciently low temperatures. The details of
these calculations will be provided in a future publica-
tion.

We begin by reviewing the experiments of Hess et al. '

NbSe2 was chosen for its excellent surface quality; atom-
ically clean surfaces were observed over the 6000-A scan
range of the STM. The material is a layered crystal
which undergoes a charge-density-wave (CDW) transi-
tion at 33 K, with a CDW gap of 35 meV, and a super-
conducting transition at 7.2 K, with a superconducting
gap ho of 1.11 meV. The upper critical field H, q& for a
field applied perpendicular to the planes is 5 T. The
coherence length g~t in the plane is 77 A. The Ginzburg-
Landau parameter tc~~ =Et/g~~ =30, so that NbSe2 is an
extreme type-II superconductor. The experiment is per-
formed by applying a field H )H, ~ perpendicular to the
surface, so that an Abrikosov flux lattice is formed. The
dl/dV vs V curves are obtained by imposing a small
dither voltage of 0.1 mV on top of the sample voltage,

g ~
~ ~

C
1 x10 —i 2x10

tAo

0 r i 0-8
1 x 10

M

1 x10

—5 -4 —3 —2 —1 0 1

v (mv)

0

2 3 4 5

FIG. I. Data of Hess et al. (Ref. I) showing dl/dV vs V for
NbSe2 in a 0.02-T field and at a temperature of 1.85 K. The
data give results for three STM tip positions; at the vortex
center (top), about 75 A (= g~~) away from the vortex center
(middle), and 2000 A away (bottom). Note the different zero
for each curve.

while a constant sample to tip distance is maintained.
We have included a reproduction of the data of Ref. 1 in

Fig. I. Far from a vortex, the dI/dV vs V agrees with
the usual BCS form (once one accounts for smearing due
to thermal effects). However, at the center of the vortex
a rather pronounced peak appears at small bias. The
height of this peak is quite sensitive to the position of the
tip relative to the center of the vortex. It is this
enhanced conductance near zero bias which is the puz-
zling feature of these data.

Before embarking upon a discussion of the technical
details of our calculation, we would like to first provide
an intuitive explanation of our results. In the presence of
a single vortex, the pair potential A(r) is zero at the
center of the vortex and asymptotically approaches its
zero-field value ho at a distance of several coherence
lengths from the center of the vortex. In some respects,
this spatial variation of the pair potential is analogous to
a potential well for the quasiparticles, of depth ho and

1989 The American Physical Society 3089



VOLUME 62, NUMBER 26 PHYSICAL REVIEW LETTERS 26 JUNE 1989

radius —g~~.
' Quasiparticles with energies E &Ao will

form bound states in the radial direction in this well,
with an energy spacing of order 6 /2m(~~ —do/EF &&Ao,

where EF is the Fermi energy (in this paper energies are
measured relative to the Fermi energy). Quasiparticles
with energies E & Ap will be scattered from the vortex.
It is the bound states which yield a nonzero total' density
of states for energies E (Ap, as demonstrated in Refs.
4-7. The local density of states, on the other hand,
reflects the spatial behavior of the quasiparticle wave
functions. Since there is a cylindrical symmetry about
the axis of the vortex, the wave functions can be labeled
by an angular-momentum quantum number p (p must
be half integral ). As shown in Fig. 2, the lowest-energy
bound states (those with small p) will have wave func-
tions which are peaked closer to the axis of the vortex
(just as the low-angular-momentum states of the hydro-
gen atom are peaked closer to the origin). Therefore, a
measurement of the local density of states at the vortex
core would find an enhancement at small bias since the
low-energy bound states have a much greater probability
of being close to the center of the vortex. Farther from
the center of the vortex the bound-state wave functions
have diminished weight, and the local density of states
will be dominated by the high-energy scattering states.
Thus, su%ciently far from the center of the vortex the lo-
cal density of states will assume its zero-field BCS form.
This is precisely the behavior observed in the experiment.

In order to make a quantitative comparison to the ex-
periment, it is necessary to solve the Bogoliubov-de
Gennes (BdG) equations for the quasiparticle ampli-
tudes u(r) and v(r) in the presence of a single vortex.
We first note that for NbSe2 2ho/k8T, =3.58, close to

the BCS value of 3.53, justifying the weak-coupling ap-
proximation. Second, de Haas-van Alphen measure-
ments indicate that these materials have extremely long
mean free paths, '' so that it is possible to work in the
"clean" limit. In cylindrical coordinates, r =(r, 8,z), the
order parameter is of the form A(r) =exp( —io)A(r)
with h(r) real. By taking advantage of the cylindrical
symmetry, the quasiparticle amplitudes may be written
as4

(the o's are the usual Pauli matrices). The BdG equa-
tions then take the form

6' d' 1 d 1
CZ-. + P Q +

2mII dI. r dr '
2 6

—k~ g(r) + rr„A(r)g(r) =Eg(r),
r2

2

(2)

where g is a two-component spinor. We have assumed
diA'erent efI'ective masses mII in the plane and m, along
the z direction, and defined a radial wave number k~ by

g2k2 g2k2=EF-
2mII 2m,

(3)

h (r) =Vgg„+ (r)g„(r)[I —2f(E„)], (4)

Since NbSe2 is an extreme type-II superconductor, the
vector potential in Eq. (2) may be ignored in subsequent
calculations. The pair potential h(r) is to be determined
self-consistently from
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FIG. 2. Quasiparticle amplitude I u(r) I

' vs the distance r
from the vortex center for two diff'erent values of angular
momentum p, demonstrating that the first peak in the ampli-
tude occurs further away from the center for larger p (and
hence larger energy). The parameters used here are k, =0,
Ez/ho =250, and d=1.0 [see Eq. (6)l.

where the sum on the states n is restricted to positive-
energy states (with energies less than the Debye energy),
V is the attractive coupling, and f(E) is the Fermi func-
tion. Finally, the quantity of interest is the local density
of states, defined as

N(r, E) =X[Ign (r) I 6(E E„)—
+

I g„(r) I
'~(E+E„)j.

In these last two equations the summation includes an
integration over the scattering states.

Our numerical procedure consists of determining the
eigenvalues by using a "shooting" method. We first fac-
tor out the asymptotic oscillatory behavior of the wave
functions g(r), and then solve the resulting differential
equation for a fixed p and k, by integrating far from the
vortex axis to the axis. The requirement that the wave
functions be well behaved at the axis determines the ei-
genvalues and corresponding eigenfunctions. For the
pair potential, we choose the form

A(r) =ho tanh(dr/g~~) .

We initially guess a value for d, and after the wave func-
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tions are determined we can then solve for h(r) from Eq.
(4) in order to obtain a better estimate of d, if we as-
sume that the shape of A(r) is accurately determined by
only the bound states. This allows us to obtain an ap-
proximately self-consistent solution.

Our numerical results are shown in Figs. 2-4. We
have assumed an isotropic three-dimensional material
(mI =m, ) and chosen parameters appropriate to
NbSe2. ' The eigenvalues for small p and k, agree to
better than 1% with the results of Caroli et al. [see their
Eq. (10), valid in the limit p«EF/hp and small k, ].
Our total density of states has a minimum at zero energy
and a form in agreement with that found by previous
theoretical and experimental investigations. ' Figure 3
shows the local density of states at r =0 and r =/II, while

Fig. 4 shows the thermally broadened local density of
states (which is proportional to the experimentally mea-
sured differential conductance dI/dV) at a temperature
of 1.9 K. The thermal broadening is due to the finite
temperature of the STM tip, and is determined by con-
voluting the results in Fig. 3 with the absolute value of
the derivative of the Fermi function. Note that at r =gii,
the local density of states displays considerable structure,
but that this structure is smeared into one large peak
once we account for the broadening. We do find that at
somewhat lower temperatures or further from the vortex
center, a double peak (with a dip in the differential con-
ductance at zero bias) persists after thermal broadening
(although at large distances it will be washed out by the

thermal broadening of the scattering states into the gap
region).

Our results for the differential conductance are in sa-
tisfactory agreement with the experimental results of
Hess et al. ,

' although the peaks we obtain are about 2.5
times higher and somewhat narrower than theirs. We
believe this discrepancy has two sources: (I ) intrinsic
effects, e.g. , pair-breaking and dirt effects in the sample
(Hess et al. do find some sample dependence in the
height of the peaks' ); and (2) probe resolution, e.g. , the
spatial resolution of the tip, and uncertainty in the tip
temperature due to lack of tip equilibration with the
bath. We could imagine accounting for broadening due
to probe resolution by using an effective tip temperature
of 3.5 K, which is obtained by fitting the energy width of
the experimental peak at r =0. Using this effective tem-
perature would reduce the peaks in Fig. 4 by about 40%.

Overhauser and Daemen' have recently published an
alternative calculation of the zero-bias tunneling peak
(valid only for the center of the vortex). Their intuitive
approach is rather different from our systematic solution:
They perturbatively couple normal core electrons to the
superconducting excitations outside the core. We have
duplicated their calculation; their results differ qualita-
tively from ours (even after correcting for their use of
the measured dI/d V curve, which includes thermal
broadening, as the superconducting density of states out-

I I I I I I I I I I I I

K

A

15 I I I I

: r=o

I I I I

CQ

A 4—
O0

3

0
0-l 2

aj

r=0

O0

0 ""
—1.0 —0.5 0.0 0.5 1.0

—0.5 0.0 0.5 1.0 E/Ao

FIG. 3. Calculated local electron density of states vs energy,
normalized by the Fermi-level density of states in the normal
metal, for r =0 and r =gii. For r =0, the peak is at
N(E, r) = 180 (off scale). The parameters are Er/Ap =250
and d = 1.0. These parameter values yield a nearly self-
consistent result for h(r) when T=1.9 K.

FIG. 4. The same data shown in Fig. 3 after convolution
with the derivative of the Fermi function for a temperature of
1.9 K, in order to simulate the diA'erential conductance that
would be observed in the experiment. Note that in this and the
previous figure, gii has been set so that the spatial width of the
peak at zero bias approximately matches that seen in the ex-
peri men t.
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side the core). On the other hand, we believe that the
basic underlying physics we are describing is the same as
that of Overhauser and Daemen.

In conclusion, we have solved the Bogoliubov-de
Gennes equations numerically for the quasiparticle
bound-state energies and wave functions in the core of a
vortex, and have found that we can satisfactorily repro-
duce the zero-bias tunneling peak seen by Hess et al. '

We find additional structure in the local density of
states, and on the basis of this, we predict that if the tun-
neling experiment is performed at lower temperatures,
the zero-bias peak will split into a double peak (with a
dip at zero bias) as the STM tip is moved away from the
vortex center. ' Future work includes solving for the
scattering states, in order to obtain a complete descrip-
tion of the local density of states and to allow us to in-
corporate the scattering states into the self-consistent
solution for the pair potential A(r). The effects of im-
purities and of magnetic fields (important for materials
with tr —1) also warrant further investigation. We are
also considering the implications for the high-T, materi-
als, where the small coherence lengths and large super-
conducting gaps will make the energy spacing of the
bound states fairly large. Finally, we are investigating
the eAect of quasiparticle tunneling between the vortices,
which will become important in higher magnetic fields.
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