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Chem Numbers and Adiabatic Transport in Networks with Leads
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We study the Chem numbers associated with the adiabatic conductances of mesoscopic systems with
leads. We describe the results of exact calculations of all the Chem numbers of several model networks.
For a network with one lead we find the integer conductances 0, ~ 1. For a network with three leads we
find noninteger conductances bounded by 1.

PACS numbers: 72. 10.Bg, 02.40.+m, 72.20.My

It is known ' that the adiabatic conductances of quan-
tum systems can, in certain cases, be identified with the
adiabatic curvature associated with Berry's phase.
Quantized conductances are then the first Chem
number —the integer obtained by averaging the adiabat-
ic curvature. For this reason, the computation of Chem
numbers for Schrodinger operators is an interesting
physical problem.

The Chem numbers of noninteracting electrons in a
magnetic field and periodic or quasiperiodic potentials
have been studied extensively. They satisfy Diophan-
tine equations, and can be very large for suitable fields.
Chem numbers have also been studied in the context of
localization theory. The motivation for much of this
comes from the quantum Hall effect.

Another setting where Chem numbers have been stud-
ied is for several relatively simple mesoscopic networks.
These networks may be represented by graphs (e.g. , Fig.
1). The loops are threaded by independent, externally
controllable, flux tubes p;, i =1,2, 3. The electrons are
constrained to the links.

One is interested in the charge transported around
loop i as the flux pl increases adiabatically by the unit of
quantum flux, which we take to be 2z. This charge may
depend on p; (and on the remaining flux pi, ), and need

not be an integer. However, this charge averaged over p;
is an integer, provided the corresponding eigenstate is
nondegenerate for all p; and &I. This integer, a Chem
number, labels the eigenstate bundle. It generally is an
antisymmetric and periodic function of the third flux pk,
with discontinuities at the values of pt, where level cross-
ings occur.

Our purpose here is to initiate the study of Chem
numbers for mesoscopic networks with long tails (e.g. ,
leads), similar to those in Figs. 1(b) and 1(c). Leads
play a significant role in mesoscopic systems. In the
present context, with leads to length l, there are O(l)
eigenstates in each energy interval, and so there are
many Chem numbers to compute. This poses the follow-
ing interesting theoretical problems: (a) What is the
distribution of these Chem numbers? (b) Is the charge
transport quantized to be an integer in the l ~ ~ limit?
(c) Can one get arbitrarily large Chem numbers? (d)
What is the dependence on the Fermi energy? (e) How
are networks with and without leads related?

In this Letter we address these questions for models
associated with the graphs in Fig. 1. Lack of space
prevents us from describing the detailed analysis, but we
shall outline the main ideas. Details and additional re-
sults will be presented elsewhere.

The Schrodinger equation for noninteracting electrons
associated with the graphs in Fig. 1 reduces to the study
of a 3 x 3 matrix problem. The construction of such ma-
trices has been described in Refs. 5 and 8. We take all
the short links to be of length 1, and all the leads to be of
identical length I»1. For these graphs the relevant ma-
trices are

(a) (b) (c)

1+z 1+y
H (k, p) = —[sin(k)] ' 1+z X2" 1+x

1+y 1+x X'&'

FIG. l. (a) A network with three loops threaded by three
independent flux tubes, with six links of equal length meeting
at three vertices. (b) The network of (a) with three long leads
of length I emanating from the vertices. (c) The network of
(a) with one long lead of length I emanating from a vertex.

where j labels the model (a, b, or c) and

x —=exp(if| ), y —=exp(i&2), z =—exp(i&3) . (2)
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For model a we have

kI' =l2' =X3' = —4cos(k),

for model b we have

(3)

so we need only compute g]2 for 0 ( p3 (n. We find

0, for 0& p3 & 2m/3,
g12 & I]13 g]2 ~ ]t]3

= —4cos(k)+sin(k) tan(kl),

and for model c we have

(4)
1, for 0& ]t]3 & 2x/3,

g]2(2, 03) gl2(5 P3) = '
0, for 2x 3 & p3 & x, (8)

&I' =X2' = —4cos(k),

&3' = —4cos(k)+sin(k)tan(kl) .
(s)

[12]+.=(cos(k) = —, , p] =&2=1]]3=~2m/3),

[123]=(cos(k) =O, y] =It]2=y3 7z),

[23] =(cos(k) = —2,p] I(2 Q3 0) .

(6)

The associated charges are

ch([12]~) = —1, ch([123])=2, ch([23]) = —2. (7)

The behavior near [12]+. is approximated by the 2 x 2
spin Hamiltonian H= —(8p). J with J= —,', and near
[123] by the 3x3 Hamiltonian H=+(8&).J with J=l.
Near [23] the Hamiltonian is not adequately described
by a linearization; higher-order expansions are needed to
compute the charge.

We write g]2(j, l]]3) for the 1-2 Chem number as a
function of p3 for level j. g]2 is periodic in p3 with period
2x, and, by time reversal g]2(j, ]t]3) = —g]2(j, —It]3), and

The energy of the particle is k /2m, k )0, and the
null space of H ~ (k, p) gives the vector of amplitudes of
the wave function at the vertices of the graph. The ex-
plicit matrix in (1) involves a choice of gauge and a
choice of scattering potentials at the vertices.

In the following we take l to be an integer. This
makes H ~ (k, p) periodic in k and in each component of
p, with period 2x, and so we can restrict our attention to
one period. Model a has no leads, but we give the results
because they are needed for models b and c below.

Model a: H ' (k, p) depends only on cos(k) and p, so
it is sufficient to consider the interval 0 ~ k ~ n only. At
fixed p, there are three eigenstates in this interval (and
another three in the interval z~ k ~ 22r). Label the lev-

els 1, 2, and 3 in increasing order of energy. To compute
the Chem numbers of the three levels one has to identify
the points in (cos(k), p) space where levels cross. With
each such crossing an integer "charge" is associated,
which gives the discontinuity of the Chem number as the
degeneracy is crossed. The Chem numbers are then
determined by adding the charges between 0 and ]t13.

There are four points of level crossing, each lying on
the body diagonal It]I =]t12 =&3. We write (ij ] for a cross-
ing between levels i and j, and [123] for a crossing of all
three levels. Then these crossings occur at

g12 (1 ~ 03)]3+ g12 (2~ 03)23

co23 for 0 & p3 & 2x/3

co]3 for 2z/3 & p3 & z,

where co]3(&3) and co23(&3) are weights, 0 & co23

& co ] 3 & 1 . Specifically, ro;i (]t13) is the difference in the
probability P(k) between levels i and j, divided by the
probability diff'erence between successive copies of level
i. Although these diA'erences vary with k, their ratio
does not, at least in the l ~ limit. These weights in
general depend on p3. The 1-2 conductance is then
bounded by 1, and is discontinuous at p3 =0, ~ 2x/3, x.

Model c: There is an eigenstate at each interval of ap-
proximate size x/I of the k axis, and so in the basic
period 2x there are O(2l) eigenstates. To locate the
charges we introduce some terminology.

The singular set of the third vertex is the set of points
in (k, p) space where the minors of H]'](k, p) with
respect to the third row all vanish. That is, the set

[4cos(k) ] ' = (1+z) (1+z ),
—4cos(k) i 1+y i =(1+x)(l+y)(1+z) .

(10)

Since at a level crossing the Hamiltonian H ' (k,p) has
rank at most 1, all the level crossings (and so all the

g]2(3 ]]]3) g]2(4, 1t]3) = —1, for 0 & p3 &

By rotational symmetry g23 and g3] are similar (as func-
tions of p] and ]]]2, respectively, instead of y3).

Model b: There are 6l+6 energy levels in a basic
period 0 ~ k ~ 2z. However, under rescaling of the en-
ergy axis the model is equivalent to I + I copies of model
a—the only diA'erence between a and b being the func-
tional dependence of X and k in Eqs. (3) and (4). The
Chem numbers are given by Eq. (8), except that the first
triplet (1,2,3) repeats itself !+1 times in the interval
0~ k & 2r, while the second triplet (4,5,6) repeats itself
l+1 times in the interval z ~ k (2x.

The periodic repetition of Chem numbers on small en-
ergy scales leads to real (i.e., noninteger) transport. To
see this, let P(k) =[1+exp[P(k —kF)/2m]] ' be the
Fermi-Dirac distribution with x /ml «P '«x /m and
kF in (0,7r). Then, with g]2(j, ]t]3) the Chem number of
level j, we have

(g]2)(y3,P) —=QP(&, )g 2(j, ]]] )
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charges) must lie on the singular set. This set is com-
posed of three one-dimensional "strings" St, Sii, and
S t i t, and one two-dimensional "sheet" Sz, given by the
formulas

Sl .. x =y, z =1, cos(k) = —
—,
'

Sii. x y, z =x, cos(k) = —cos(tiki)/2,

Siit'. x y = —1, cos(k) = ~ cos(tt3/2)/2,

Stt . z = —1, cos(k) =0.
The sheet and Si lie on a constant energy surface and

support only isolated level crossings (that is, the number
of crossings does not grow with l). As long as cos(kF)
does not equal 0 or —

2 these crossings do not contrib-
ute to the total conductance.

The number of crossings that accumulate on strings
S~t and Styli, on the other hand, is O(l), and their distri-
bution is uniform in k. In every k interval of size tr/1

there are two crossings on each string. On SI t the cross-
ings all have charge —1, while on St~~ they all have
charge +1.

Consider now the total conductance, which is the sum
of the Chem numbers of all the states below a fixed Fer-
mi momentum kF. This is determined by the charges at
the Fermi surface (the charges below the Fermi surface
only serving to exchange Chem numbers among the
filled states without changing the total). If 0 & kF & tr/3,
or 2tr/3 & kF & 4tr/3, or 5tr/3 & kF & 2tr, the Fermi sur-
face does not intersect any of the strings, and so all the
conductances vanish. If, on the other hand, tr/3
& kF & 2tr/3, or 4tr/3 & kF & 5tr/3, then the Fermi sur-
face slices Sii at the two points ~ g in flux space and
slices Slit at the two points ~ g in flux space, where

&
= (a, a, —2a), t) = (tr, tr, —2a),

(i 2)
cos(a) = —2cos(kF) .

Since + t) (with charge +1) and + g (with charge
—1) have the same values of p3, it follows that glz van-
ishes for all values of p3. However, since the second
components of tl and g differ, g|3 is given by

0, for 0&tltq&a,
(i3)

In this case, the average charge transport is an integer.
To sum up, in model a there are six states with k & 2z,

and all six carry integer conductances g i 2, which are
nonzero for some ranges of p3. The conductances add up
to zero, and so if all states are occupied there is no
charge transport, but if only some states are occupied
then an integer nonzero total conductance may be ob-
served.

In model b there are O(l) states with k & 2tr, all of
which may have nonzero Chem numbers. These states

come in triplets, the Chem numbers of each triplet add-
ing to zero. Thus the average conductance gets a contri-
bution only from the slight diff'erence in occupation
probability of the states in each triplet. Summing over
triplets, this gives the non-integer total conductance of
Eq. (9).

In model c there are O(l) states with k & 2tr. Most
states may have nonzero Chem numbers for p3 in some
interval of size O(l '), but for any given value of tt3

only a handful [O(1)] have nonzero Chem numbers.
These are the states that intersect the singular set at that
given value of tlt3 (or tltz for g|3). The total conductance
is thus always a small integer, and depends on which of
these few states are occupied, i.e., how the Fermi energy
relates to the energy of these states. The conductance
gi 2 is always zero, as states with Chem numbers + 1 and
—

1 always occur at the same energy. The conductance
gi3, however, can be 0, +I, or —1, depending on pq and
kI;.
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