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Fractal Structure of Ising and Potts Clusters: Exact Results
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It is shown that previously defined clusters, which give a geometrical description of the fluctuations in

the q-state Potts model, at criticality have a fractal structure made of links and blobs as in percolation.
Using the mapping from the Potts model to the Coulomb gas it is found that the fractal dimension of the
links or red bonds D& is given by 4, 4, 24 2p 0 while the fractal dimension of the external hull DH is

given by 2, 4, —, , —, , —, , for q =0, 1,2, 3,4. A model originally introduced by Mandelbrot and Given for
percolation clusters if found to correctly describe the fractal structure of the Potts clusters.

PACS numbers: 64.60.Ak, 05.20.—y, 75. 10.Hk, 75.40.Cx

How to characterize geometrically a fluctuation near a
critical point is a long-standing problem' that recently
has received renewed attention, due to a novel experi-
ment in which direct visual observation of critical fluc-
tuations was possible. It is now well established that in

an Ising model the naive definition of clusters made of
nearest-neighbor parallel spins is not satisfactory.
These clusters are in fact too large, representing both
correlations and pure geometrical eA'ects. As an example
at T=~ in a typical configuration clusters of parallel
spins are present although there is total absence of corre-
lations. To eliminate the pure geometrical eAect a
diAerent definition of cluster was proposed for the Ising
model and generalized to the q-state Pot ts model.
These new clusters are defined as nearest-neighbor sites
in the same state connected by bonds, each bond being
present with probability p =1 —e, where K is the
nearest-neighbors (NN) coupling constant of the Potts
Hamiltonian —/fp/kT=K+t;p6 . . with cr; =1,2, . . . , q
being the spin variables (Fig. 1). With such
definition, ' the clusters behave correctly at the critical
point T, ; namely, their radius and the density of sites in

the infinite cluster behave critically as functions of
~
T —T, ~, respectively, with the correlation length ex-

ponent v(q) and the order-parameter exponent P(q) of
the q-state Potts model. In particular, these clusters
coincide with the clusters of the tree percolation problem
for q =0, of the random percolation problem for q =1,
and of the Ising model for q =2. It has been shown
that the statistics of these clusters can be obtained from
the following Hamiltonian:

—/f/k T =Jg (8..., —1 )6, , +K+8 .

where the second term, which controls the distribution of
the spin variables, is the q-state Pot ts Hamiltonian,
whereas the first term contains auxiliary Potts variables
r; =1,2, . . . ,s and controls the bonds distribution. More
specifically it can be shown ' that by differentiating the
free energy of Hamiltonian (1) and taking the limit s =1
one obtains the distribution of the clusters made of sites
in the same spin configuration connected by bonds,
present with probability p=1 —e . By choosing the

particular bond probability with J=K, Hamiltonian (1)
assumes a simple form and describes the correct clusters.
These are the only clusters that I will consider
throughout the paper.

The interest in the geometrical description of the fluc-
tuation has gone much beyond the original motivation.
Recently, Swendsen and Wang' (SW) introduced a new
dynamics, which instead of flipping one spin at a time,
flips altogether all the spins in the same cluster. The re-
sulting algorithm has proved to be extremely fast com-
pared with the Glauber dynamics, with a drastic reduc-
tion of the critical slowing down. Using geometrical con-
cepts, a scaling Ansatz was recently proposed, '' relating
the exponents of the two dynamics. How to elaborate
the SW dynamics to further reduce the critical slowing
down is a big open question which may be enlightened by
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FIG. l. (a) Ising configuration: "up" and "down" spins are

represented, respectively, by filled and empty circles. (b)
Correct clusters obtained from the configuration given in (a)
by putting bonds between sites in the same state, with proba-
bility p=1 —e . Note the spanning cluster of the "up" spins
is made of three dangling bonds, four red bonds (if one of these
is cut the cluster does not span anymore), and one blob made
of four bonds.
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DR(q) =yJ(q) . (2)

precise information on the fractal structure of the Potts
clusters.

In percolation much progress was done when it was
recognized that the backbone of the incipient infinite
cluster at p, has a fractal structure made of links and
blobs. To be more precise, in a typical configuration
which spans the system from top to bottom one has to
distinguish dangling bonds and a backbone. The back-
bone is made of singly connected bonds, called red
bonds, such that if one is cut, the top is disconnected
from the bottom and the blobs which are made of multi-

ply connected bonds. ' ' While the fractal dimension of
the whole cluster' is identical to the magnetic scaling
exponent yH (I ), the fractal dimension of the red bonds '3

is identical to the thermal scaling exponent yx. (1). How
much of this picture can be extended to the clusters of
the q-state Potts model has so far been an open problem.

It has already been noted ' that at T, these clusters
are fractals with fractal dimension' D(q) =d
—P(q)/v(q), where d is the Euclidean dimension. Note
that D(q) coincides with the magnetic scaling exponent
yn(q) and reduces to the well-known result for percola-
tion for q =1.

It is interesting to note that the exact value' of D(q)
does not vary substantially with q, as shown in Table I
for d =2. This observation can be understood by noting
that using this geometrical approach, the driving mecha-
nism of the critical behavior can be viewed as coales-
cence of clusters just as in a percolation transition. Then
one would expect for any q that the fractal dimension
should be close to the fractal dimension of the critical
clusters in the percolation problem. This also explains
the observation, known as strong universality, ' made by
Suzuki that over a large class of models the ratio y/v or
P/v does not vary appreciably. Since these ratios of criti-
cal exponents for fixed d depend only on the magnetic
scaling exponent, which is identical to the fractal dimen-
sion, the strong universality is a consequence of the
quasiuniversal feature of the fractal dimension as dis-
cussed above.

It is the aim of this paper to investigate how much the
fractal structure of the percolation picture can be ex-
tended to the q-state Potts clusters and, by exact results
in 2D, to see what are the geometrical properties which
change substantially with q, in particular, when q ap-
proaches the critical value q, above which the transition
is of first order.

Links and blobs At T, .t—he clusters of the q-state
Potts model are found to have a structure made of links
and blobs just as in percolation [Fig. 1(b)l. However,
the fractal dimension of the red bonds does not coincide
with the thermal scaling exponent y~(q). Instead, it is
found to coincide with the bond probability scaling ex-
ponent yJ(q) associated to the variable J in the Hamil-
tonian (1)

To be more precise, yJ(q) =vs '(q) where va(q) is the
critical exponent associated with the divergence of the
radius of the clusters in which the temperature is fixed at
its critical value K, and the bond probability p as an in-

dependent variable approaches from below p, = 1 —e
i.e., g —(p„—p) "~. The result of Eq. (2) is based on
the following relation:

p dp;, /dp =(X;,), (3)

where p;~ =(y;~) is the probability that i and j are con-
nected and y;~ is 1 if i and j are the same Potts cluster, 0
otherwise, and k;~ is the number of red bonds between i

and j. The brackets denote the average over all Potts
variables and bond configurations; namely,

( . . )=—$e P $. . . p (1 —p)Z g ~ G
(4)

(1 —p) dp;, /dp =(p;,), (5)

where p;j. is the number of bridge bonds between the
clusters to which i and j belong, such that if one was
present the two sites would be connected. Since relation
(5) has been proved for random percolation defined on
any graph, using the same reasoning as for the red
bonds, relation (5) can be extended to the Potts clusters

where Z =g,.e ~, the first sum is over all Potts vari-
ables, the second sum is over all graph 6 contained in
the graph E fcr; j made of all bonds connecting NN sites
in the same state, for a fixed configuration jo;j 8 is the
number of bonds in the graph G, and D is the number of
empty bonds. In Eq. (3) the derivative is made with

respect to the bond probability, considered as an in-

dependent variable, and then p is put equal to 1 —e
Relation (3) follows from a general result' valid for
random-bond percolation for any graph, which relates
the pair connectedness to the average number of red
bonds as in (3). Therefore by writing such a relation for
any graph Efa;j and averaging over all configurations
jo;j we obtain a relation (3) valid for Potts clusters.
From (3) following the same procedure as for random
percolation ' it follows Eq. (2).

Hull and bridge bonds. —The typical nonspanning
configurations are characterized by almost spanning
clusters. For each cluster the hull or external perimeter
is made of all the absent bonds surrounding the cluster.
The absent bonds are of two types, those between sites in

the same state and those between sites in different states.
The "bridges"' instead are absent bonds such that if
one was present two clusters would merge in one single
spanning cluster. The absent bonds that we consider
here are only those between two sites in the same state.
It is possible to show that the fractal dimension of the
red bonds and of the bridge bonds is identical,
Ds(q) =Dz(q). This is a generalization of a result valid
in percolation' (q= I) and follows from a relation simi-
lar to (3)
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of the Potts clusters is made of links and blobs as in per-
colation. The fractal dimension of the clusters coincides
with the magnetic scaling field yH(q), whereas the frac-
tal dimension of the red bonds coincides with the bond
probability scaling exponent yJ(q). This exponent is dis-
tinct from the thermal scaling exponent ytr(q) except for
q =1. What is the geometrical quantity related to the
thermal scaling exponent for q~l is still an open prob-
lem. We finally remark that the fractal dimension of the
red bonds goes to zero at q, =4, showing a drastic
change in the fractal structure due to the appearance of
the first-order transition, whereas yH(q) is roughly con-
stant and ytr(q) is an increasing function of q, without
showing any peculiarity at q, .
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Nazionale delle Ricerche, NSF grant.

FIG. 3. Adapted from Fig. 3 of Ref. 22. Fractal dimen-
sionalities for diA'erent quantities as a function of the parame-
ter s in the Mandelbrot-Given model. The vertical lines corre-
spond to the values of s which map onto q=0, 1,2, 3,4, as ex-
plained in text.

posed a fractal model for percolation clusters in 2D.
However, this model, as we will see, turns out to be
much richer than expected and can describe Potts clus-
ters besides percolation clusters. The MG model is con-
structed from a Sierpinsky gasket of base b =3 in which
the order of ramification is controlled by a parameter s,
in a range of values between 0 and 1. Mandelbrot and
Given calculated the fractal dimension of various quanti-
ties as functions of s, such as red bonds, backbone, and
backbone hull. To describe the percolation cluster they
chose s=0.4 which gave results that better fitted the
available data.

Now using the exact results obtained in this paper for
D(q), it is possible to find a correspondence between the
whole range of values of s and the parameter q of the q-
state Potts model. This can be done using the implicit
equation DR (s) =DR(q), where Dtt (s) is the fractal
dimension of the red bonds as a function of s in the MG
model (Fig. 3).

One can check the validity of this mapping by compar-
ing the available information in the two models: (1) The
fractal dimension of the whole cluster in the MG model
is 1.8298 for all values of s and has a value of about 1.9
in the Potts model for all values of q; (2) the fractal di-
mension of the hull for s=4 is 1.465 which compares
well with DH(0) =1.5; and (3) for s =1 and q =0 where
both models are loopless we have Dtt (1)=1.293 which
compares well with DR(0) =1.25.

In conclusion, I have shown that the fractal structure
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