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Extreme Nonlinear Damping by the Quasiparticle Gas in
Superfluid He-8 in the Low-Temperature Limit
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The resistance to motion of a wire in superfluid He-8 has three contributions: that due to the internal
friction of the resonator; that due to pair breaking; and that due to the quasiparticle gas. We have been
able to separate the quasiparticle contribution and find that it is highly nonlinear with velocity on the
scale of the Landau velocity, ts/pF, and falls with increasing velocity. This indicates that the quasiparti-
cle resistance is also governed by the condensate, almost certainly through Andreev reflection in the flow
field around the wire.

PACS numbers: 67.50.Fi

When a macroscopic object (in the present case the
wire of a vibrating-wire resonator) is projected through
superfluid He-8 at temperatures much below T, two
things happen. At low velocities the object experiences a
drag force from the quasiparticle gas, which varies with
temperature as exp( —A/ktt T). (Despite a large amount
of experimental and theoretical effort the actual magni-
tude of this damping is much higher than any simple
theory has been able to predict. ) Further, when the ve-

locity reaches a value of around a quarter of the "classi-
cal" Landau critical velocity, 6/pF, then pair breaking
begins and a very much larger drag force appears,
which grows extremely rapidly with further increase in

velocity. In the present Letter we report that we have
been able to separate these two contributions to the
damping, and in consequence we can report that the
effects of the quasiparticle gas alone are not only highly
nonlinear, but show the counterintuitive property that
the damping coefficient falls as the velocity increases,
apparently asymptotically to a value near zero at the
Landau velocity.

The experiments are performed on a series of vibra-
ting-wire resonators in superfluid He-B, the experimen-
tal configuration being similar to that described eariler.
The He is cooled by contact to copper nuclei, them-
selves cooled by adiabatic demagnetization to a tempera-
ture of around 50 pK. The magnetic excitation field for
the resonators is provided by the final demagnetization
field, usually 32 mT in the present work.

The resonators used here are of smaller loop diameter
(about 3 mm rather than 8 mm) than those used in our
previous work (described in some detail in Ref. 3). Oth-
erwise the techniques are similar. The voltage generated
by the movement of the wire in the excitation field is
detected by a two-phase lock-in amplifier with a high-
quality transformer as an input preamplifier. Prelimi-
nary characterization of the mechanical resonance of the
wire is achieved by stepping the frequency through reso-
nance at a constant drive current. The damping of the
resonator as a function of velocity is then observed, in
the same configuration, as follows: The frequency is set

to a fixed value close to resonance, and the (vector) volt-
age measured as the drive current is slowly stepped up-
wards from zero. When small corrections are made for
the self-inductance of the wire (negligible in practice)
and for any zero error in the lock-in amplifier, the mea-
sured voltage simply yields the velocity of the wire as an
average along the length perpendicular to the field. The
driving current gives a measure of the similar average
driving force on the resonator.

This type of measurement is then repeated at a num-
ber of temperatures, from base temperature (less than
100 pK at 0 bar pressure, see below) up to around T,/3.
The temperature is adjusted by a steady heat input pro-
vided by a second wire, driven rather violently, and the
'He temperature is measured (and monitored as con-
stant) from the resonance width of a third gently driven
wire. A set of curves of velocity versus drive level taken
in this way is shown in Fig. 1. The measurements in the
figure all refer to the same vibrating wire, on the same
day, and in the same magnetic field.

Similar results have been taken for four different
wires. All are single filaments of superconducting NbTi,
derived from a multifilamentary magnet wire. The
finest wire has a diameter of around 5 pm, and the oth-
ers are all of diameter around 12 pm. We have made
measurements at two pressures, 0 and 6.8 bars, in order
to study the influence of the superfluid energy gap and
Landau velocity on the damping. The Landau velocity
changes by a factor of about 3 between these pressures.

The simplest way to analyze and present the velocity-
versus-drive data is in terms of an effective damping
function G, which represents the mechanical impedance
for the resonator, where the impedance is defined as the
ratio of the driving force to the induced velocity, at reso-
nance. Here the force is IBl, where I is the drive
current, 8 is the magnetic field, and l is the effective
length of the wire, a length of order the leg spacing, i.e.,
about 3 mm. The mean velocity of the wire can be ex-
pressed as V/Bl, where V is the measured voltage. For a
given wire and in a given field (i.e., constant 8 and l) the
impedance or damping function G is thus directly pro-

3042 1989 The American Physical Society



VOLUME 62, NUMBER 26 PHYSICAL REVIEW LETTERS 26 JUNE 1989

10
E
E

O

E

E
&C

0
0

Driving force, arbitrary units

FIG. 1. The response in He-8 of an approximately 5-pm-
diam wire resonator, expressed as maximum velocity (see text),
as a function of drive level for a number of temperatures from
below 100 to 220 pK. The rapid change in slope at v .,„=9
mm s ' represents the onset of pair breaking. The nonlinear
behavior at lower velocities is clearly seen in the higher-
temperature curves. The pair-breaking edge is also accom-
panied by a great deal of fine, and highly reproducible, struc-
ture. Inset: The geometry of the resonator.

where the terms have the following origins.
Go is the vacuum-damping term, the damping which

portional to I/V.
At this point we need to add two words of caution.

First, since in practice the data are not taken precisely at
resonance, we use for the effective force the in-phase
component of the current IcosO instead of I, where 0 is
the phase angle from resonance. This is a minor adjust-
ment only in all the data presented here. Second, if con-
version to absolute values of velocity or drive is needed,
then we have to take into account the geometry of the
loop. The measurements are made in terms of rms
values of current and voltage. Our high-Q resonators os-
cillate (virtually) harmonically, so that conversion of the
average over time into a time variation is straightfor-
ward. However, since all parts of the wire are not mov-

ing with the same velocity, there is also spatial averag-
ing, and this is not so straightforward to handle. We es-
timate that the maximum velocity of the extreme top of
the wire is related to the measured average rms velocity
by a factor of about 1.75. It is unfortunate that we can-
not make use of a geometry of uniformly and transverse-
ly moving cylinders, rather than the contorted arrange-
ment we are restricted to. Nevertheless the conversion
can be relied upon to about 10%.

The analysis of the data follows straightforwardly if
we assume that the damping function G for a vibrating
wire in superAuid He-8 as a function of wire velocity U

is made up of three principal contributions. We write

G(v) Gp+Gi+G2,

would be present in the absence of the He. We believe
that this term is a constant, i.e., independent of v, in the
velocity range covered in these experiments. Nonlineari-
ties in the vacuum response do occur, but typically at 10
times the maximum velocity used here. The maximum
amplitude employed is of order 10 pm, comparable to
the wire diameter. At the lowest temperatures this vacu-
um-damping term dominates the low-velocity damping.

The second term G
~

arises from the scattering of ex-
isting therma1 quasiparticles by the wire. We shall find
that this term, when separated, turns out to be strongly
nonlinear in v.

The third term G2 relates to quasiparticle pair pro-
duction. To a good approximation, for any one wire, this
term is a function only of the reduced velocity, v* =v/vl,
and arises from the breaking of superfluid Cooper pairs
to form quasiparticle excitations. As previously noted,
the main onset of dissipation occurs at about v* =0.25 to
0.30 for all wires. The present work shows that G2 has
no significant dependence on temperature up to about
0.25T„ the highest temperature at which these fine-wire
resonators can be readily studied. This is to be expected
since we assume that this term depends directly on the
superAuid density p„which is essentially constant
throughout our temperature range.

There are two additional small effects. The detailed
form of G2 is wire specific, to be expected since the wires
are not perfectly smooth cylinders, and neither are the
loops perfectly Aat. Physical irregularities of the wire
surface must exist, and these will distort the superfluid
backflow. Furthermore, we see pressure-dependent steps
and other structure at the pair-breaking "edge" which
will be discussed in a later publication.

Using the ideas discussed above, we can analyze the
experimental results to bring out the properties of the
new quasiparticle damping term, G ~

of Eq. (1).
First, we take the experimental data for one particular

wire and experimental run (as shown in Fig. 1), calcu-
late the impedance G from V and I as discussed above,
and plot G against velocity v. The family of curves so
derived is then most usefully displayed with G normal-
ized to the low-velocity value G(0). [The magnitude of
G(0) corresponds to the low-level frequency width Af2
which we use for thermometry, and can itself be used as
a secondary thermomenter for the He. ] The data of
Fig. 1 are plotted in this way, i.e., as G/G(0) against v,

in Fig. 2.
Several points stand out. Most significant is the non-

linearity at low velocities (i.e., below the onset of pair
breaking) in all the curves except the coldest. For the
curves taken at base temperature, the quasiparticle
damping term G~ is everywhere negligible, and therefore
from Eq. (1), G =Gp+G2. The absence of nonlinearity
in G for these curves at v & 0.15vl reAects the expected
linear behavior of the vacuum-damping term, with the
pair-production term being the first deviation from
linearity. Had our previous measurements not been
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ing with velocity? As can be seen in Fig. 3 the non-
linearity is extremely strong, f falling to about 0.3-0.4 of
its low-velocity value at the critical velocity.

There have been two puzzles in the way wire resona-
tors behave in superfluid He-8. First, as mentioned
above, the low-velocity damping, although having a
reasonable temperature dependence, has a much higher
magnitude than expected. The basic problem has been
stated in an earlier paper. We can use a simple kinetic
argument that the damping is caused by the collision of
quasiparticles with the wire. We assume that the quasi-
particle density is proportional at T«T, to (I/JT)
xexp( —A/kttT), and that the quasiparticles travel with

group velocity proportional to JT and exchange momen-
turn of order pF with the wire on each collision. This ap-
proach yields the correct temperature dependence but
seriously underestimates the magnitude of the damping,
by a factor of 100 to 1000. It has been pointed out by
Hall that the correct order of magnitude is obtained
from the kinetic argument if p„/m* is used instead of
the simple quasiparticle density, introducing a factor of
order EF/kttT. However, there is no firm theoretical
basis for this way around the problem (see Sec. 3.2. 1 of
Ref. 3).

The second puzzle is why pair breaking is observed to
set in at a relative velocity between wire and liquid of
only 0.5 to 0.6 of the Landau velocity, apparently in-
dependent of wire diameter and surface condition. Any
simple argument would suggest pair breaking should
start at a wire velocity v =vt/2, i.e., a relative velocity of
vq, unless recourse is taken to convoluted arguments
about the surface roughness (excrescences increase the
local relative velocity between wire and liquid).

With reference to the form of the impedance in Fig. 3,
we note that the scale on which the quasiparticle im-
pedance is changing is indeed that of vL. Indeed the
data look very much as if g/g(0) is asymptotically ap-
proaching zero as v~ vL. We can thus say that the
superfluid component definitely plays some role. This
strongly suggest that the mechanism of the nonlinearity
lies in the interaction of the quasiparticles with the con-
densate in the form of the Aow field of superAuid around
the wire. The relative velocity of the backAow implies
local modifications to the quasiparticle dispersion rela-
tion of magnitude E =pF v, which become dominant in

the superfluid when v —vr. This modification of the
quasiparticle dispersion near the wire means that quasi-
particles can transfer momentum to the wire from An-
dreev processes taking place out in the Aow field, thus
greatly increasing the eA'ective cross section. Unfor-
tunately Andreev processes only transfer relatively small
momenta compared with normal processes (ApF/EF as
against pF), and the direct efI'ect of the increased cross
section is largely lost.

The precise shape of the g/g(0) curve is very odd.
One would expect any mechanism, whether involving the
condensate or not, to give deviations from linearity (i.e.,
from g constant) at low amplitude which are even
powers of v. However, Fig. 3 shows deviations down to
the lowest velocities measured. (In fact, I/g can be fitted
by a virtually straight line in v. ) The continuity of the
term through the pair-breaking region is quite amazing
given the small size of g compared with the total G from
which it is extracted. Nevertheless, why should the im-
pedance fall with increasing velocity, apparently to near
zero at the Landau velocity? There are many unsolved
questions here.
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