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Higher-Order Corrections in (2+ I) -Dimensional QED
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QED in 2+1 dimensions, analyzed to lowest order in the 1/N expansion, has been shown to exhibit
dynamical chiral-symmetry breaking when the number N of fermions is less than 32/z . This analysis is
extended by considering higher-order corrections to the gap equation. It is shown that while these
corrections modify the form of the gap equation, the nature of the symmetry breaking remains the same.
It is also shown that the critical number of fermions is a gauge-invariant quantity.

PACS numbers: 11.15.Pg, 11.30.Qc, 12.20.Ds

The model we wish to consider is quantum electro-
dynamics in 2+1 dimensions. It has the following La-
grangian:

I ~ yr(i& eA ) iaaf 4 Fp~,

where we have N four-component spinors y. This theory
is super-renormalizable in 2+I dimensions. However,
the same power-counting arguments show that, in the
massless case, there are ir divergences that become worse
as the uv behavior gets better. To remedy this we will

use the 1/N expansion. ' This will soften the ir behav-
ior of the photon propagator and leave the Green's func-
tions finite order by order. Since the theory is massless,
the mass scale is set by the dimensional coupling con-
stant a=Ne /8 which is kept fixed as N ~. Every-
thing in the theory is rapidly damped for momentum

scales p & e.
To study chiral-symmetry breaking we use four-com-

ponent spinors. This allows us to introduce y3 and y5
which anticommute with yo, y], and y2 in the Lagrang-
ian. The massless theory is then invariant under y

exp(iay3) y and y exp(iPy5) y. Together with the
identity matrix and [y3, ys] we have a global U(2N)
"chiral" symmetry. A mass term may will break this
symmetry to U(N) &&U(N). One may also consider a
parity-violating mass term my —, [y3, y5] ill but we will not
do so here.

Following Ref. 5 we study solutions of the Dyson-
Schwinger gap equation. The inverse fermion propaga-
tor is S(p) ' = —p'[I+A(p)]+X(p), where A(p) is the
wave-function renormalization and Z(p) is a dynamical-
ly generated flavor-independent fermion mass. The Dy-
son-Schwinger gap equation is

2a ~" d k y"Dpv(p —k)[k[I +4(k)l+&(k)[I '(p, k)
k [I+A(k)] +22(k) (2)

where, in the Landau gauge,

D„,(p —k) = ""," ' (3)g„,—(p —k)„(p —k),/(p —k) '
(p —k) 'll+ II(p —k)]

and I '(p, k) is the vertex. The lowest-order approxima-
tions in 1/N are A(p) =1, II(p —k) =a/~ p —k ~, and
I'(p, k) = y', where we have assumed the fermion mass
is negligible in the calculation of rl(p —k). After angu-
lar integration this yields

If we set Z(p) =p" we have

b(b+1) = —8/rr N (6a)

or

i can be neglected. This agrees with the above approxima-
tion for II(p —k). Then, linearizing the kernel, we find
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A numerical and analytical study of this equation was
carried out in Ref. 5 yielding a critical number of fer-
mions N„such that for N )N„Z(p) =0. It is argued
there that since the theory is strongly damped for p & e,
it is reasonable to assume that the relevant physics
occurs when p/a ( 1. Hence, only the lowest-order
terms in p/a are kept, and a hard cutoff at p =a is im-
posed. Also, by choosing N near N„Z(k) can be made
arbitrarily small and the region k ~ Z(k) in the integral

As discussed in Ref. 5, chiral-symmetry breaking occurs
when b becomes complex, that is for N &N„where
N, =32/rr = 3.2.

The existence of the critical value N, has been ob-
tained using only the leading terms in the 1/N expansion
of the kernel. It is important to examine whether this re-
sult is reliable given the smallness of N, . Some evidence,
both for the qualitative conclusions that an N, exists and
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(e)

FIG. 2. First-order contribution to the wave-function renor-
malization 4 (p). This term appears when computing the
order-(1/N ) contribution of Fig. 1(a).

(e)

FIG. 1. The diagrams that contribute to order 1/N in the
expansion of the linearized kernel of the Dyson-Schwinger gap
equation. The x represents an insertion of the operator Z(k)
everywhere except in diagram (a). In diagram (a) the x is

Z(k) [I —2~ (k) I.

for the approximate correctness of the above numerical
value, has been provided recently by lattice simulations.
It is the purpose of this paper to check directly the relia-
bility of the I/N expansion for critical behavior by es-

timating the contribution of the next-order terms in the
expansion of the kernel. If they are reasonably small for
N =N„additional evidence will have been provided that
there is an N, and that the 1/N expansion correctly cap-
tures the physics leading to the critical behavior.

To include all terms to order I/N in the expansion of
the kernel we consider the graphical expansion of the

Dp, k
g„,—(1 —&)(k)„(k),/(k) '

(k)'[I +II(k)]
(7)

The gauge parameter g should drop out of the calcula-
tion of physical quantities. After checking this we will

set g = 1 to simplify calculations.
To begin, we first consider wave-function renormaliza-

tion. From Fig. 2, we find (for p/a«I)

~(p)=4, ln ~ +—.(2 —3&) c

We next turn to the contributions to the gap equation.
Figure 1(a) gives

Dyson-Schwinger gap equation shown in Fig. 1. In order
to study the gauge invariance of the theory, we make use
of a g-dependent propagator which may be obtained
from a nonlocal gauge-fixing term (note when / =0 we

have the standard Landau-gauge photon propagator):

2(2+()a " kZ(k) k+p+a 4(2+j) ' Z(k)
rr'Np "e k [I+A(k)]'+X'(k) i k —p i

+a rr'N "e max(k, p)
(9)

We have used the same approximations as in Eq. (5) to linearize Eq. (9). In Ref. 5 the A(k) term was ignored because
it is of higher order in 1/N. Here, we are including the 1/N terms. As seen in Eq. (8), A(k) is of order 1/N and we

expand the denominator of the left-hand side of Eq. (9) to include it.
The quantity we wish to consider is Z(p)/[I+A(p)] [it is this quantity, rather than Z(p), that leads to an N, that is

independent of g]. When we include all diagrams from Fig. 1 we find that Fig. 1(b) and the 1/N portion of Fig. 1(a)
both contain logarithms of p/a [these are the second and third terms in the square brackets of Eq. (10a)]. The remain-

ing diagrams, Figs. 1(c), 1(d), and 1(e), will contribute only to the constant piece in the kernel. We make use of the
assumptions k[1+A(k)]»Z(k), and min(k, p)/max(k, p)(&1 in the integrand. This second approximation retains

only the dominant behavior of the two-loop integrals. In particular, it keeps track of all possible ir and uv divergences.
Adding all the diagrams in Fig. 1 we find

Z(p) 4(2+ g) I"dk
Z(k) 1 I +2 (k)

1 +2 (p) & N " o max(k, p) I +4 (p) I +4 (k)
1
—2A(k)+ 8(2 —3g)

3x N
r

max(k, p) + c
a N

(loa)

4(2+ g) t' dk Z(k) 4(2 —3g)
I

max(k, p) + c
max(k, p) 1 +2 (k) 3z~N min(k, p) N

(Iob)

It is important to note that the ln(p/a) terms have canceled in the kernel. This cancellation is a direct consequence
of the U(1) Ward identity. Were it not to occur, then the region where X(0) is exponentially smaller than a (N near
N, ) would lead to bad ir behavior in the integral, and this would qualitatively change our results. The potential danger
of the ln(p/a) terms, were they not to cancel, was noted in Ref. 8.

What remains can be seen to depend upon the anomalous dimension X of the fermion field [see Eq. (8)]; this yields

&(p)
I+a (p)

4(2+() I" dk Z(k) max(k, p) I
c

max(k, p) 1+4 (k) min(k, p)
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4 + 134
3z N 9z N

24a 4 13 01
~4N'

(13)
The constant c from Eq. (11) is found to be

80+6a
9

placing these values in Eq. (11) results in
II'

32 341 +48a
48~2N

(14)

32 7.81 (1S)

where k =4(2 —3g)/3rr N. Setting Z(p)/[1+2 (p)]
~p, and momentarily considering only first order, we
have

4(2+ g) 4(2 —3g) 32
z N 3+ N 3z N

Solving this gives N, = —', (32/rr ) where all g depen-
dence has dropped out. The difIerence between this N,
and the one found in Ref. 5 is the factor of 3 . This fac-
tor arises because we have included first-order contribu-
tions to the anomalous dimension k. These contributions
change the form of the kernel from that considered in
Ref. 5. Higher-order terms in general should modify the
anomalous dimension X and the constant term c in Eq.
(11), but should make no more qualitative changes to
the kernel.

We have computed the second-order corrections with
the gauge choice (=1. The diagrams (d) and (e) of Fig.
1 were quite complicated and required numerical tech-
niques to solve. The result is that in the equations that
follow, all terms that are due to higher-order corrections
to the vacuum polarization [such as Figs. 1(d) and 1(e)]
depend on a numerical factor a =0.706. All terms that
are not proportional to a were found analytically and are
exact.

In order to be consistent, we must find the 1/N con-
tribution to the anomalous dimension k. It is calculated
to be

Solving b(b+1) = —4, we find N, =3.28 (there are
actually two solutions to this equation, but the second
one gives an N, near 1 and we consider it unphysical).
This result shows that the second-order corrections are
quite reasonable, changing N, by only about 25%. More
importantly, it shows that they do not qualitatively
change our solution. We still have the same critical be-
havior as found in Ref. 5, and the new value of N, is
consistent with the results of the lattice calculations.
While we have shown here that the second-order correc-
tions are small, we have not proven that all higher-order
terms may be neglected. However, we have presented
evidence that, at the point of chiral-symmetry breaking,
the critical value N, is probably large enough that our
expansion is reasonably convergent.

Our result demonstrates that an expansion of the ker-
nel of the Dyson-Schwinger gap equation in powers of
1/N appears to describe reliably the critical behavior of
the theory as a function of the number N of fermions.
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