Comment on "Reflected Phase-Conjugate Wave in a Plasma"

Nebenzahl, Ron, and Rostoker' (NRR) consider the mixing of two strong counterpropagating transverse electromagnetic "pump" waves (labeled ¹ and 3, and having amplitude E_0 , frequency ω_0 , and wave vectors $\pm \mathbf{k}_0$ with an imposed weak wave (labeled 2, and having frequency ω_s and wave vector \mathbf{k}_s) in a homogeneous plasma to generate a fourth wave (labeled 4 and having frequency $2\omega_0 - \omega_s$). This is the standard "phase-conjugation" geometry of "four-wave mixing." Resonant enhancement is obtained by arranging that $\omega_0 - \omega_s$ equal the ion-acoustic wave frequency $\Omega = v_q q$, where $q \equiv$ $-{\bf k}_s \vert$ and v_a is the acoustic velocity. NRR claim that this geometry provides a special enhancement that allows strong wave mixing to be observed at intensities several orders of magnitude below those required to produce, for example, significant stimulated Brillouin (acoustic-wave) scattering. Here we correct their derivation to show that no such enhancement exists, just as it is known not to exist when the Langmuir resonance is used instead² or when the acoustic resonance in nonconducting media is used.

The main result of NRR is that the wave 4 has an amplitude whose magnitude is tan $\lvert \kappa \rvert L$ times that of the incident wave after interacting for a distance L. In their Eq. (12) for the peak κ , the acoustic linewidth Γ_a appears, having been introduced in their (unnumbered) expression following Eq. (6) for the linear dielectric function $\epsilon_a(\mathbf{q}, v)$ of the plasma near the ion-acoustic resonance $(\nu \sim \Omega)$. In fact the Γ_a appearing there should be multiplied by $(k_D/q)^2$, where k_D is the Debye wave number. 3 This factor moves unchanged through the remaining analysis with its approximations for q and k_s so that, in the final result (12) of NRR, one must replace the κ by the modified

$$
\kappa_{\text{mod}} = \kappa (q/k_D)^2. \tag{1}
$$

If we call the scattering angle between the beams labeled 1 and 2 by θ_{12} , and assume, as NRR did, that the acoustic frequency Ω is small compared to the optical pump frequency ω_0 (where the refractive index is near unity), then $q = (2\omega_0/c)\sin(\theta_{12}/2)$ and $k_D = \omega_p (mc^2/T_e)^{1/2}$, so that we may write

$$
\kappa_{\text{mod}} = \kappa (T_e/mc^2) (\omega_0/\omega_p)^2 4 \sin^2(\theta_{12}/2) \,. \tag{2}
$$

Using the numerical example of the authors, one finds that the corrected κ_{mod} is 4 orders of magnitude smaller than their value for κ . We next show that κ_{mod} shows no enhancement over the usual stimulated Brillouin growth coefficient, and hence the whole analysis must be modified to include nonlinear Brillouin currents.

If, in the geometry of NRR, wave 3 is turned off, then the weak wave 2 simply experiences exponential growth, i.e., its intensity is proportional to $exp(\beta_s l)$, where l is the distance traveled along its wave vector. In a plasma in which there is no bound-state nonlinear response²

$$
\beta_s = \pi E_0^2 e^4 \operatorname{Im} R_e(\mathbf{q}, v) / \omega_s \omega_0^2 \hbar m^2 c \text{ cm}^{-1}, \qquad (3)
$$

where $R_e(q, v)$ is the electron density response function defined, for quantum (or classical) plasmas, by

$$
\int_0^\infty dt \int d^3x \, e^{i\nu t - i\mathbf{q} \cdot \mathbf{x}} i \langle n(\mathbf{x},t), n(0,0) \rangle \, . \tag{4}
$$

Here n is the usual electron number density operator, and the $\langle \rangle$ signifies the appropriate average. We may define similarly the ion density response function $R_a(q, v)$ by replacing n in (4) by the ion number density operator N. For v near the acoustic frequency Ω , the electrons follow the ions nearly perfectly and we may use $R_e \approx Z^2 R_a$ in (3). Here Ze is the ionic charge. If we know the spectral shape of $R_a(q, v)$ we may normalize it by the Thomas-Kuhn-Reich identity $\int_{-\infty}^{\infty} v dv R_a(q, v)$ $\equiv \pi \hbar q^2 \bar{N}/M$, where M is the ion mass and \bar{N} is the average ion density. If there is a Lorentzian acoustic resonance of full width at half maximum γ (rms) then the peak value of Im $R_a(q, \Omega)$ is $\hbar q^2 \overline{N}/\Omega \gamma M$ and (3) gives for the maximum Brillouin gain coefficient

$$
\beta_{sm} = \pi E_0^2 e^4 Z q^2 n_0 / \omega_s \omega_0^2 m^2 c \Omega \gamma M \text{ cm}^{-1}, \qquad (5)
$$

where $n_0 = Z\overline{N}$ is the average electron density. With the approximation of NRR that $\Omega = q(T_e/M)^{1/2}$, and $\Gamma_a = \gamma/\Omega$, we calculate the ratio of (5) to (3), assuming the same total pump intensity in each case, and find

$$
\beta_{sm}/\kappa_{\text{mod}} = 4Z\omega_0^3/\omega_s c^2 q^2. \tag{6}
$$

Since $cq \leq 2\omega_0$ this ratio is always greater than, or nearly equal to, unity. Realizing that the Brillouin growth coefficient β_{sm} is always larger than the pure four-wave mixing coefficient κ_{mod} , one must redo the analysis of NRR with the (Stokes and anti-Stokes) Brillouin currents included, and interfering coherently, with the four-wave mixing current. The solution is no longer of the form tan κL . Such complete solutions have been studied for the Langmuir resonance, with the result "that for waves near the matched condition $(|\mathbf{k}_1 - \mathbf{k}_2|)$ $+{\bf k}_3 - {\bf k}_4 \mid L \lesssim 1$) the growth rate is always lower than $+\kappa_3 - \kappa_4$ ($L \gtrsim 1$) the growth rate is always lower than hat for unmatched waves."² This is also commonly the case for nonconducting media. We would not be surprised if it were the case here also.

R. W. Hellwarth

Department of Electrical Engineering University of Southern California Los Angeles, California 90089-0484

D. Lininger and M. V. Goldman Physics Department, Box 390 University of Colorado Boulder, Colorado 80309

Received 19 October 1988

PACS numbers: 52.25.Sw, 42.65.Bp, 52.35.Mw

'I. Nebenzahl, A. Ron, and N. Rostoker, Phys. Rev. Lett. 60, 1030 (1988).

 ${}^{2}G$. Baym and R. W. Hellwarth, IEEE J. Quantum Electron. 1, 309 (1965).

³ Radiation Processes in Plasmas, edited by G. Bekefi (Wiley, New York, 1966).