Comment on "Microwave Spectroscopy of High-L H₂ Rydberg States: The (0,1) 10 G, H, I, and K States"

In a recent Letter Sturrus *et al.*¹ have found the electric quadrupole moment of the (0,1) state of H_2^+ to be 1.6432(2)*ea*₀² which is 0.04% larger than the calculated values to which they refer.² This difference is completely accounted for by the neglect of nonadiabatic corrections.

The total electric quadrupole moment is composed of a nuclear (q_n) and an electronic (q_e) part and with the origin at the nuclear center of mass it can be written as

$$Q = q_n + q_e = \frac{1}{2} \langle R^2 \rangle - \frac{1}{2} \left[3 \langle z^2 \rangle - \langle r^2 \rangle \right], \qquad (1)$$

where $\langle \rangle$ indicates an expectation value over the complete electronic-vibrational-rotational wave function of H₂⁺; *R* is the internuclear separation, *r* is the distance of the electron from the nuclear midpoint, and *z* is the electronic coordinate along the nuclear axis. The wave functions used in Eq. (1) may be obtained by one of three procedures: (a) the Born-Oppenheimer approximation and the use of an uncorrected potential-energy curve, (b) the Born-Oppenheimer approximation and use of a potential curve corrected by diagonal nuclear terms (adiabatic results), (c) no Born-Oppenheimer approximation but use of eigenfunctions of the complete three-particle Hamiltonian (nonadiabatic procedure). The values of *Q* referred to in Ref. 1 were obtained by procedure (b).

In Table I, I give results (previously reported³ but with fewer significant figures) for Q and its components as obtained by these three procedures for the ground state (v=0, J=0) of H_2^+ . The nonadiabatic corrections to the results of Ref. 2 are the difference between the last two columns and hence the correction to Q in its (0,0) state is $\pm 0.0007072ea_0^2$. It is unlikely that this *correction* will be very different for the (0,1) state for which the adiabatic value of Q is $1.6425656ea_0^2$. I, therefore, estimate the nonadiabatic value of Q for the (0,1) state to be $1.64327ea_0^2$. However, before comparing this value

TABLE I. Values (in atomic units, $ea\delta$) for Q and its components for H₂⁺ in its ground state.

	Born-Oppenheimer	Adiabatic	Nonadiabatic
$\langle z^2 \rangle$	1.1716684	1.1721042	1.1717374
$\langle r^2 \rangle$	2.4794673	1.4801243	2.4804737
$\langle R^2 \rangle$	4.3110626	4.3133133	4.3132779
Q	1.6377624	1.638 5625	1.6392697

with the experimental value, consideration should be given to relativistic corrections. This can only be done approximately. For $R = 2a_0$, Sundholm, Pyykkö, and Laaksonen⁴ have found that $\Delta q_e(\text{rel}) = -5.22 \times 10^{-6}$ and since⁵ $\Delta R(\text{rel}) = -37.6 \times 10^{-6}$, results $\Delta q_n(\text{rel})$ $\approx -75.1 \times 10^{-6}$. So that for the fixed nuclear distance $R = 2.0a_0$ the relativistic correction to Q will be of the order of $-8 \times 10^{-5}ea_0^2$. Assuming this is approximately the same when averaged over the (0,1) vibrationalrotational wave function, we obtain a final value of Q of $1.64319ea_0^2$, which is in extraordinarily good agreement with the experimental value.

David M. Bishop

Department of Chemistry University of Ottawa Ottawa, Canada K1N 9B4

Received 21 November 1988

PACS numbers: 33.20.Bx, 33.40.Hp, 35.20.My

¹W. G. Sturrus, E. A. Hessels, P. W. Arcuni, and S. R. Lundeen, Phys. Rev. Lett. **61**, 2320 (1988).

²D. M. Bishop and B. Lam, Mol. Phys. (to be published).

³D. M. Bishop and L. M. Cheung, Mol. Phys. **36**, 501 (1978).

⁴D. Sundholm, P. Pyykkö, and L. Laaksonen, Phys. Scr. 36, 400 (1987).

⁵D. Sundholm, Chem. Phys. Lett. **149**, 251 (1988).