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Influence of Dissipation on the Landau-Zener Transition
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The quantum dynamics of the Landau-Zener transition in a dissipative environment is studied and
analytical results for the transition probability are given in terms of temperature, coupling strength, and
the Landau-Zener time. For short Landau-Zener time there is no eAect of dissipation. In the opposite
limit we distinguish various temperature regimes: The adiabatic limit is shown to be restricted to low
temperatures and no eff'ect of dissipation is present at zero temperature. At intermediate temperatures
thermal transitions dominate for weak coupling and high temperatures correspond to the strong coupling
limit.

PACS numbers: 82.20.—w, 05.30.—d, 31.70.Dk, 32.80.Bx

We consider the explicitly time-dependent situation in
which the energy levels of a quantum-mechanical system
are brought close together in the course of time by exter-
nal means, so that transitions between the levels take
place and enable us to study the effect of a dissipative
environment on the transition probability. This level
crossing problem appears in numerous contexts not only
in physics, but also in chemistry, through its relevance to
chemical reaction kinetics, ' as well as in biophysics. In
physics the problem is encountered widely from the solar
neutrino puzzle to numerous situations in atomic and
solid-state physics: Nuclear magnetic resonance, as-
pects of the behavior of laser irradiated atoms, atomic
collisions, atoms scattering oA' surfaces, and dielectric
breakdown are all well-known examples. However, the
question has also gained renewed interest in view of its
relevance to mesoscopic systems, for example, the effect
of dissipation of Zener tunneling and the resulting
influence on the dynamics of an electron in a mesoscopic
ring. The question of the eA'ect of dissipation on the
quantum dynamics of a macroscopic variable has recent-
ly received much interest in the context of macroscopic
quantum tunneling and coherence, ' and in this respect
the present paper addresses questions relevant for the
possible observability of Bloch oscillations in Josephson
junctions, insofar as this eA'ect can be considered the
counterpart of an electron moving in a crystal under the
influence of an external electric field.

In the absence of coupling to the environment the
nonadiabatic transition we consider is customarily re-
ferred to as the Landau-Zener transition. Quantitatively
this level crossing is described by the two-dimensional
spin problem as given, in terms of the Pauli matrices, by
the time-dependent system Hamiltonian H, (t) = vttT,
+ho. . For the description of the environment we take
harmonic oscillators as represented by the bath Hamil-
tonian Htt =g hto, (a, a, + & ) and for the interaction
between system and environment we take the coupling
linear ' ' in the bath coordinate 4; HI =a,X, X
=g X (a, +a ). Here a and a, denote the boson

P Tr[pttPTU+(~, —~)PTU(~, —~)], (2)

where U(t, t') =Texp[( —i/6) ft 1t H(t)] is the evolu-
tion operator (T denoting time ordering) corresponding
to the total Hamiltonian H(t), PT projects onto the
spin-up state, and + denotes Hermitian conjugation.
Certain aspects of the problem have previously been
studied from a phenomenological point of view. We
shall perform a microscopic calculation and employ the
real-time quantum-dynamical technique' as this general
method allows calculations for externally driven systems
at finite temperatures.

We start by calculating the transition probability in
the limit where the system's degrees of freedom traverses
the transition region slowly, that is, the Landau-Zener
time rLz =6/v is much smaller than 6/A or in terms of
the dimensionless parameter @=A /2Av, y»1. The cal-

creation and annihilation operators corresponding to the
frequency m, and X, is the coupling constant. ' Our to-
tal Hamiltonian is thus the spin-boson Hamiltonian with
a time-dependent bias

H(t) =H, (t)+Htt+Ht .

The model is specified by the energy gap 2h, between
the two levels and the effective coupling to the environ-
ment as described by the spectral function J(co) =(2/
6) Q,A, ,6(to —co, ) and as external parameters we have
the sweeping rate v, describing the effect of the external
force, and the temperature T.

We now pose the problem to be solved: At a remote
time to (which for all purposes can be taken to be
to= ~) we assume that our initial state is described
by the initial statistical operator' p~

=
~ t)(t ~ p~, where

pz is the equilibrium statistical operator for the bath de-
scribed by exp( —Htt/kttT). The system, that is the
spin, is then initially in the ground state and we then ask
for the probability P that the system in the far future is
in its excited state while the bath is assumed unobserved.
For the transition probability P we then have the expres-
sion
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culation is facilitated by rotating around the y axis in
spin space through the angle g(t) = —arccot(vt/5) to
obtain the Hamiltonian &'(t) in the adiabatic frame

'H (t) =Hp(t) +H i (t),

where Hp(t) = —e, cT, +f(t)cT,X+Hs is diagonal in spin
space, and H~(t) =(Avh/2e& )o~+(5/et)a„X. We have
introduced the adiabatic energy e, =[(vt) +4 ]'t and
the abbreviated notation f(t) =vt/c, . The first term in
H

~
(t) describes the correction to adiabaticity as reflected

by the unitary transformation to the adiabatic frame,
R(t) =exp[ & ig(t)o~/h], being time dependent. The en-
vironment coupling to o., is now time dependent and
weaker in the transition region as compared to the origi-
nal frame, but in this region we now get an additional
coupling to o„,represented by the second term in H~ (t),
which causes flips between the up and down spin states
accompanied by phonon emission and absorption. In the
adiabatic limit we only need to consider one flip and
upon getting rid of the explicit appearance of the spin
operators by utilizing the fact that Hp(t) is diagonal in
spin space we get the following expression for P:

& OO 6 oo

P „dt~ dtzexp —(2i/ft), dt c, (U~(t~, tp)8[e, „X(t~)]U—~(t~, t2)8+[a,„X(t2)]U~(t2,tp)&, (4)

where we use the shorthand notations 8 [a„X(t)]=Av/2e, + i(A/he, )X(t) and U+ ~ (t, t') =Texp[(+ 1)( —i/h )
&& f,' dt f(t)X(t)], where X(t) =exp(iHst/A)Xexp( —iHst/ft) has been introduced, and the bracket ( .

& is short for
tr(ps ), where tr denotes the trace over the environmental degrees of freedom only.

We now employ the real-time dynamical technique by introducing the generating functional for the environmental
coordinate X along the closed time path c, extending from —~ to +~ and back to —~ along the real axis' '
Z [pl =(T, exp[( —i/ft )f, dz ((z)X'(z)]&. Here z resides on c and T, denotes the contour ordering operator.

Employing functional differentiation we can then express Eq. (4) as

f+ oo f+ oo
t Il

P 2Re J dt~ „~ dtqexp —(2i/6) J, dt e, B[e,„ih[b/Bg~(t2)]jB+jr&„iA[8'/8$~(t~)]jZ[g]
~ &=co,

provided that after the functional differentiation we in-
sert the proper "force" g=g . On the forward part (in-
dicated by subscript 1 on g) of the contour we shall
choose g~ (t) =f(t)[1—2[e(t —t~) —e(t —t2)j], where
e denotes the step function and on the return part (indi-
cated by subscript 2 on g) we shall choose gz(t) =f(t)
The generating functional Z is according to Wick's
theorem given by

Z[g] =exp (i/2h ) „dz& dz'i;(z)D(z, z')g(z')

where we have introduced the contour ordered Green's
function, D(z, z') = —i(T, [X(z)X(z')l&. '

We can now evaluate the integrand of Eq. (4) and ob-
tain

P =„dt, dt2A(t~, t2)exp[i+(t ~, t~)] .

Here +(t~, t2) =pp(t~) —pp(t2)+p(t~, t2), A(t, t') =(v&/
2e, e, ) B(t,t'), where

8(t, t') =(2e, e, /va) '[a(t', t)a(t, t')

+ (i/it ')D
~ ~ (t, t')]Z(t, t')

is given in terms of the following:

a(t, t') =(vA/2e, ')+i(A/6'~, )„dtf(t)D~(t, t),
f f

Z(t, t') =exp ( —i/4) Jdt Jdt'f(, t)D ,(t, t')f(t')
f' I 2

y(t), t2) = —2 J dt J dt'„dcoJ(cp)f(t)
x sin [cp (t —t ') ]f(t '),

and Pp(t) = —(I/O) f' dt'e, —The G.reen's functions
appearing are the retarded, Keldysh, and the usual time
ordered. '

In the absence of coupling to the environment the in-
tegrals over t ~ and t2 are uncoupled and dominated, pro-
vided that the "adiabatic" parameter y satisfies y» 1, by
the stationary phase point of pp which for the integral
over t~ (t2) is izLz ( izLz) —If rt&&.hco, /4 then this is
also the case in the presence of the environment. '

Evaluating the transition probability in the stationary-
phase approximation gives P =8 (i zLz, —izLz) exp [i
xp(izLz, izLz)]Pp, where Pp =(x/4) exp( —2tzy) is the
bare transition probability within the same approxima-
tion. Evaluating 8 and p at the stationary point we ob-
tain the adiabatic result

P Pp exp[8(T, zLz)],

where

C(T, zLz) =2'(zLz) „dcoJ(cp)n(cp)IBcpzt z)Jp
Here n is the Bose function and I] is the modified Bessel
function. For the adiabatic result to be valid we must re-
quire not only the adiabatic criterion in the absence of
the environment be satisfied, y»1, but also that the
temperature T is smaller than d/4yks. Otherwise the
term involving D will be ultraviolet divergent and the
assumption of Z being a smoothly varying function,
necessary for the stationary-phase method to be applic-
able, ceases to be valid. Surprisingly, we find that in the
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probability,

hP =4tzy (h/h) J(2h/h)n(2h/h, ) . (7)
Thus, we easily obtain a prediction for the region

where the environment-dependent contribution hP dom-
inates the bare tunneling probability.

With the above results we have the following picture
of the slow-passage, weak coupling limit: At low tem-
peratures, ksT«h/4y, the transition takes place via
quantum tunneling, and the precursor effect on P of dis-
sipation is of the form P =PO[1+ (12'/lrt)rt(ykgT/
h) ]. ' At temperatures 5/y & ksT & h thermally as-
sisted transitions across the energy gap take place, which
for these intermediate temperatures has the form of
thermal activation across the energy gap whereas at
higher temperatures, k&T) 4, the transition probability
is linear in temperature. At high enough temperatures,
ksT»h/rty, the perturbative result is invalid reflecting
that this limit effectively is the strong coupling limit
where the transition probability, as shown later, satu-
rates to the value 2 .

The fast-passage limit, y&(1, turns out to be simple in
that to lowest order in y there is no influence of the
bath irrespective of the coupling strength so that the
transition probability is given by

P =1 —2zy.
To investigate the strong coupling limit we start from

the exact expression for the transition probability P that
emerges from Eq. (2) when one first calculates the ma-
trix elements with respect to the spin degrees of freedom
and subsequently performs the trace over the bath de-
grees of freedom. In general this expression is too
complicated to allow further progress, however, in the
strong coupling limit we can apply the so-called nonin-
teracting blip approximation. For the transition proba-
bility we then obtain

n

g (t 2i t 2i i )=2

adiabatic limit at zero temperature the tunneling proba-
bility is not affected by the presence of the coupling to
the environment as 8(T=0, zLz) is equal to zero for any
physical choice of the spectral function. ' The tempera-
ture dependence originally appears in 8 in the form
coth(@tv/2kgT) =2n(to)+1. The latter quantum noise
term is cancelled by the term exp[i&(i zLz, —izLz)]
describing the systematic force provided by the bath.
The quantum noise term alone leads to an increase in the
tunneling probability; this is due to the circumstance
that the exponentially small bare tunneling probability is
a result of delicate destructive interference between am-
plitudes which in the presence of the quantum noise is
partially upset. The cancelling systematic force term
effectively renormalizes the adiabatic parameter y, and
constitutes a combined renormalization of the energy
gap and the sweeping rate. '

In the calculation of the transition probability in the
slow-passage limit we did not explicitly have any weak
coupling restrains and for instance found a divergent re-
sult beyond the temperature kttT =h/4y independent of
the coupling strength. Now we treat the effect of the en-
vironment on the system perturbatively and by working
explicitly in the coupling strength we achieve the possi-
bility of exploring the weak coupling, but higher-
temperature regime. The zeroth-order problem given by
H, (t)+Hs is exactly solvable in terms of the parabolic
cylinder functions ' and treating Ht as a perturbation
we can calculate the transition probability P from Eq.
(2), P exp( —2' y)+hP. For the lowest-order correc-
tion in the coupling hP we can, in the slow-passage limit,
y» 1, and at temperatures ks T & h/Iny, extract the
leading order [O(1/Iny)] behavior by using the asymp-
totic expansions of the parabolic cylinder functions ' and
obtain for the lowest-order correction to the transition

W OO

P ~ I+ —,
' g ( —1)" dt 2„dtp„1 dt 1 [g (t p, t—1)+ h (t 2, t i ) ]

n=l J
where the functions g and h are given by

g(t2, t 1) =(2h/h)'cos[(v/h)(t2 —t i')]cos[Q|(t2 —t 1)]exp[—Qq(tq —
t i)],

(9)

h(t2, t i ) = (2h/6 ) sin[(v/h, )(t2 —t i )]sin[Q|(t2 —t i )]exp[ —Qp(t2 —t 1 )] .

In the strong coupling limit, ri(zv, )»1, the exponential suppression of g and h by the factor containing Q2(t) lim-
its the range of integration to small time diff'erences resulting in the simplification that we [in Eq. (9)] can neglect the
term containing h. Similarly, after a change of variables

2k —
l

xl. = $ ( —1) +'t, , yl =tpg —t2I, i, l~k~n,j= l

we note that we can drop the quadratic terms in the yk's in the expression
k

tpz
—

tpz 1=2yg xp ——2 yt + g y~
m=]

and have for the transition probability
f+ OO g OOP= 1+2(h/A. ) g ( —1)"J dx, dx2.

n=l —OO Q Xl

fO OO fO OO

dXn dJ] ' '
f+ OO n

dy„gcos [(2v/6 )yt, xi, ]

xcos[Q|(yl, )]exp[ —Q2(yt, )] .
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The integral can now be performed and we obtain

P = —,
' [1+exp( —4rry)] . (10)
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This result is valid for all temperatures and all values
of the "adiabatic" parameter y in the strong coupling re-
gime. The result, Eq. (10), has also been obtained by
the phenomenological approach of Ref. 5, where it ap-
pears as the high-temperature limiting case. Our deriva-
tion, furthermore, shows that high temperatures corre-
spond to strong coupling, thereby confirming the phe-
nomenological approach in this limit.

In conclusion, we have performed a first-principle
study of the effect of dissipation on the level crossing
transition within the Landau-Zener model. In addition
to establishing the adiabaticity criterion, analytical re-
sults have been obtained for the limiting cases. In the
fast-passage limit the transition probability is not
inlluenced by the presence of the bath for all tempera-
tures and all values of the coupling strength g. In the
strong coupling limit we have obtained the transition
probability for all temperatures and all y. In the weak
coupling and slow-passage limit we obtain the following:
at zero temperature no effect of the environment, only
unmodified quantum tunneling. At low temperatures
kttT«5/y, the exponent increases with temperature as a
power and at higher temperatures, the transition proba-
bility depends on the number of bosons present at the en-

ergy gap. At high temperatures the transition probabili-
ty approaches the strong coupling value 2 .
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