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Clean Boundary between Anisotropic Superconductors as a Weak Link
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I f two anisotropic superconductors are in perfect contact, the persistent current normal to a
sufficiently long interface must be accompanied by spontaneous creation of a vortex chain at the bound-
ary (in zero external field). The phenomenon is due to peculiar boundary conditions which should be
imposed upon currents at the interface. The vortices are subject to the Lorentz force along the interface,
thus providing the possibility of an extra dissipation and reduction of the critical current across the grain
boundary.

PACS numbers: 74.20.De, 74.60.Jg

In a series of remarkable experiments, ' Chaudhari
and co-workers have recently demonstrated that clean
boundaries of misaligned crystallites of YBazCu307
suppress the boundary critical current j,; the suppression
rapidly increases with the misalignment. A qualitative
argument is given in this Letter to show that the super-
current through the boundary between two misaligned
anisotropic superconductors must be accompanied by a
nonzero persistent current along the boundary, which
flows in opposite directions on the two sides of the inter-
face. This is due to peculiar conditions at the interface
separating anisotropic superconductors. The extra
current results in a magnetic field parallel to the bound-

ary, which must be quantized. In other words, a current
through the boundary initiates spontaneous creation of a
chain of vortices bound to the interface, causing the con-
tact of two misaligned banks to acquire properties of a
weak link. The model provides a basis for the qualitative
understanding of the IBM experiments' and sheds
light on the "bottleneck" problem of critical currents in

polycrystalline high- T, materials.
Let us consider a plane boundary, x =0, between two

anisotropic grains. It is assumed —for simplicity —that
the z axis is a common principal direction, say c, for
both crystallites, while the remaining two principal direc-
tions on two sides of the boundary are misaligned. The
misalignment may be characterized by two angles, 8 at
the right and 8 at the left [Fig. 1(a)), between one of
the "in-plane" principal directions, call it a, and the nor-
mal x to the interface on the right of the boundary
(where x & 0).

Let us also assume that a small macroscopically uni-
form current j flows through the system in the direction
normal to the boundary. This, of course, implies that the
grains can sustain the current by having a proper distri-
bution of pinning sites. Although vortices can be present
in the grain s interior, we assume that a layer of thick-
ness X (average penetration depth) around the interface
is free of pins and vortices; this is to single out the prop-
erties of the boundary itself. In materials of interest, the
London theory can be applied provided distances on the
order g (the coherence length) are of no importance.

The anisotropic version of the London equations reads, in
standard notation (see, e.g., Ref. 4),
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where the components of the dimensionless mass tensor
m;k in the x-y frame are
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FIG. I. (a) Example of symmetric grain boundary at x=O:
0 = —0 . The c axes coincide with z on both sides of the
boundary. (b) A situation in which the grain boundary at
x =0 does not have the weak-link property: c =b

m++ mQ cos 0+mb sin 0

m~~, =m, sin 0+mbcos 0,

m„~ =(m, —ms)sin8cos8.

Here m, b are the eigenvalues of m;p in the x-y plane;
the crystals are not assumed uniaxial, i.e., m, &mb. The
angle 0 acquires the superscript R for the right grain and
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L for the left. The z component of the current as well as
|1/Bz can be set equal to zero, so that the m„'s (of which
the only nonzero one is m„=m, ) are not needed. It is
assumed, again for simplicity, that 0 = —0 & 0, a
"symmetric misalignment" shown in Fig. 1(a). Then,
the diagonal elements of m;g on both sides are the same,
while m„, = —m„~; we imply hereafter that m,J (without
a superscript) belongs to the right.

The boundary conditions to Eq. (1) consist of the con-
tinuity requirements for the field h, for the normal com-
ponent of j (i.e., j,), as well as for the tangential com-
ponent of the vector potential A. Comparing the
definition h; =e;kt BAI/8xt, with Eq. (1), one concludes
that A~ can be chosen as —(4trl /c)mtl j k Th. is relation
between A and j implies a certain gauge: m;t, BAk/8x;
=Bj;/Bx; =0, the situation analogous to that of the iso-
tropic London theory, where divA =0. The continuity of
A, yields

(mykj ~ ) ' = (m, '~j ~ ) (3)

j, (m, ,„—m, , „)=[j,, (+0) —j,, ( —0)]m», ,

or using the symmetry,

j,, (+0) = —j,, ( —0) = —(m„,,/m, , )j (4)

Thus, the current component along the boundary is dis-
continuous, the current is "refracted, " while no funda-
mental law is violated (in a better theory the discontinui-
ty should be smeared over a distance —2g). This unusu-
al, at first sight, result is rooted in a peculiar feature of
charged anisotropic superfluids: The directions of the
mass liow (that of the momentum Q) and of the charge
flow j are not the same (unless both Q and j point in one
of the principal directions). Indeed, the current is given

This boundary condition was introduced first by Grishin
who considered the interaction of vortices with the inter-
face between anisotropic superconductors.

Owing to the central role of Eq. (3), it is worth indi-
cating yet another way to obtain the boundary condition
for the London equations: While performing the minim-
ization of the London free energy (to derive the aniso-
tropic London equations, see, e.g. , Ref. 4) for the system
of two misaligned crystals, one integrates the "kinetic
energy" term, fm;l, curl;hcurll, hdV, by parts. This re-
sults in the surface contribution to the free energy which
should be minimized as well, thus yielding the condition
(3).

Note that for the symmetric misalignment of Fig.
1(a), the interface x =0 is not a symmetry plane in the
presence of a persistent current j„(under x~ —x, j,
changes sign). However, the combined operation x

—x and the time inversion leaves the current j un-
changed. Therefore, the component j~ should have the
property that j,, (x) = —j~( —x); in particular, j~(+0)
= —j,, ( —0). Condition (3) now yields the following for
currents at the interface:

by j;=2en, m;t, Qt„where n, is the density of the "su-
percarriers" and Q = hVrt —2eA/c is the gauge-invariant
"supermomentum" with g being the order-parameter
phase. Equation (3), then, represents the continuity of
the tangential component of the momentum, Q~, which
must be fulfilled at the plane interface.

The current j~(x) should be attenuated away from the
boundary. To estimate this eA'ect, take the curl of Eq.
(1) and solve for j~(x), assuming j~ is y independent:

j,, (x) =j,, (+0)exp( —x/XQm») for x )0. The same
current flows along y at the left, but in the opposite
direction. The current j~ produces the magnetic field h,
with the total Ilux +=8ttj„k m,~/c per 1 cm of the y
axis. Clearly, this flux should be quantized; i.e., it should
break up into vortices centered at the interface and each
containing the Ilux quantum pp (if the boundary is
sufficiently long). In other words, the actual situation is
not as simple as in the "laminar solution" just outlined.
In particular, because of the repulsive interaction, the
vortices should form a chain with a period

L =yp/+=cyp/8trj k m y. (s)

H„=(8'/c)j k(m„, , /gm, , ) .

Thus, in the absence of an external field, the transport
current through the interface is accompanied by a vortex
chain at the boundary (provided the boundary length
exceeds L). The intervortex spacing L in the chain
diverges for perfectly aligned grains (0 =8 =0 and

m, , =0) and in the absence of the current j, through the
interface; i.e., in these cases the chain does not exist.
The Lorentz force j,p / paccting on each vortex will move
the whole chain along the boundary, unless the interface
contains pinning sites. Therefore, the ideal, pinning-
free, plane boundary cannot support any current across
itself without dissipation (except in some special situa-
tions discussed below). A real imperfect interface can be
characterized by a maximum Lorentz force that the
chain can withstand; i.e., the pinning force per unit
length of the boundary, P, can be introduced by P=j„
xpp/cL =(8trk /c )m„~j, . Therefore, the critical
current j, cx: m„~ 't ~ (sin20) 't; i.e., the boundary crit-
ical current should fall off' with increasing misalignment.
For the perfect alignment this does not impose any re-
striction upon j,; in this case j, is governed by the bulk
pinning.

Applying a small field H„one can reduce the line den-
sity of vortices in the chain, provided the direction of the
applied field is opposite to that of the quantized field as-
sociated with the chain. Therefore, a small applied field
H- can increase or suppress the j„depending on the sign
of H, . In other words, the critical current as a function
of the applied field should peak at a field, H~, which
compensates the flux of the chain. The field H~ is es-

timated by equating the Ilux, HzX jm», , through 1 cm of
the chain to +:
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Unfortunately, a comparison with the asymmetry in

j„(H) reported in Ref. 3 cannot be done because the ob-
served asymmetry might be related to other than the
boundary sources of irreversibility. Still, the simple
model outlined here describes —at least qualitatively—major experimental facts. '

The twin boundary is a special case of the symmetric
misalignment; e.g. , for YBa2Cu307, 0=x/4, m ~=(m,
—mq )/2, and m„=m~~ = (m, +mt, )/2. Therefore,

twinned grains of orthorhombic materials (such as those
of the YBa2Cu307 family) should have "built-in" weak-
link features (with respect to currents normal to twin
boundaries). These may well be associated with the "in-
trinsic" weak-link properties of single crystals discussed
in the literature.

Only special symmetric misalignments have been
treated above. The general case, of course, is more corn-
plicated and rich in possibilities. To mention only one:
Contacts between isotropic and anisotropic superconduc-
tors should be dissipative for a general orientation of the
anisotropic bank. Generally speaking, the "weak-link"
property of the interface should be present for any mis-
alignment, except some special cases which are clearly of
a practical interest. One of these situations comes about
when the normal x to the interface coincides with a prin-
cipal direction of both the right- and left-hand sides; an
example is shown in Fig. 1(b). Choosing the y and z
axes along the c and a of the right-hand side, one has

mb

mR= 0

0 0

me 0, mik

0 0 m,

m, 0 0

0 my' my,

mzy mzz

where the yz components of m;k are readily expressed in
terms of m„mb, and the angle p, shown in Fig. 1(b).
The boundary conditions (m, kj I, ) = (m, ij I, ) with
1 =y, z then yield m~~ j~+m~j, =mj» and m,~j~
+m„j, =m, j, . The tangentia1 currents, j~ „of this
case are decoupled from the transport current j, through
the boundary. There always exists a zero solution for
tangential currents; in other words, the interface sup-
ports the transport current without dissipation.

It should be noted that though the term "weak link" is
used throughout this text to describe the dissipative
property of a current-carrying boundary between aniso-
tropic superconductors, one should not confuse this
boundary with Josephson-type junctions. To underline
the difference, it is enough to mention again that a
pinning-free grain boundary cannot support any finite
persistent current across itself without dissipation. It is
interesting to note that current-voltage characteristics of
the boundary reported in Ref. 1 are more reminiscent of
a system governed by pinning than of a Josephson-type
junction, although the data are not sufficient for a
definite conclusion.

Effects of the anisotropic penetration depth upon prop-
erties of interfaces between misaligned anisotropic super-
conductors, which have been considered in this Letter, do
not exhaust all possible anisotropy effects. If the gap 6
is also anisotropic, the properties of the boundary in

question should differ from those described above. How-
ever, given the little experimental information now avail-
able, the role of the gap anisotropy is hard to estimate.
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